
Hadar: Heterogeneity-Aware Optimization-Based
Online Scheduling for Deep Learning Cluster

Abeda Sultana1 Fei Xu2 Xu Yuan3 Li Chen1 Nian-Feng Tzeng1
1School of Computing and Informatics, University of Louisiana at Lafayette, USA

2School of Computer Science and Technology, East China Normal University, China
3Department of Computer and Information Sciences, University of Delaware, USA

Abstract—With the wide adoption of deep neural network
(DNN) models for various applications, enterprises, and cloud
providers have built deep learning clusters and increasingly
deployed specialized accelerators, such as GPUs and TPUs,
for DNN training jobs. To arbitrate cluster resources among
multi-user jobs, existing schedulers fall short, either lacking
fine-grained heterogeneity awareness or hardly generalizable
to various scheduling policies. To fill this gap, we propose a
novel design of a task-level heterogeneity-aware scheduler, Hadar,
based on an online optimization framework that can express
other scheduling algorithms. Hadar leverages the performance
traits of DNN jobs on a heterogeneous cluster, characterizes
the task-level performance heterogeneity in the optimization
problem, and makes scheduling decisions across both spatial and
temporal dimensions. The primal-dual framework is employed,
with our design of a dual subroutine, to solve the optimization
problem and guide the scheduling design. Extensive trace-driven
simulations with representative DNN models have been conducted
to demonstrate that Hadar improves the average job completion
time (JCT) by 3× over an Apache YARN-based resource manager
used in production. Moreover, Hadar outperforms Gavel[1], the
state-of-the-art heterogeneity-aware scheduler, by 2.5× for the
average JCT, shortens the queuing delay by 13%, and improves
FTF (Finish-Time-Fairness) by 1.5%.

Index Terms—distributed deep learning, scheduling, optimiza-
tion

I. INTRODUCTION

The application of deep learning has become ubiquitous

across various domains, including but not limited to speech

recognition, natural language processing [2], supercomputing,

and social media [3]. To facilitate the ever-increasing demand

for deep neural network (DNN) training [4], large enterprises

and cloud providers [5], [6], [7] have constructed dedicated

deep learning clusters. These clusters have increasingly de-

ployed specialized accelerators, such as GPUs, TPUs, and

FPGAs, to accelerate DNN model training with intricate

architectures. Expensive resources in such clusters require

efficient scheduling among multiple user jobs, considering

overall deep learning job performance, cluster-wide resource

utilization, fairness, etc.

The research is supported in part by the National Science Foundation under
grants OIA-2019511, OIA-2327452, 2348452 and 2315613, in part by the
Louisiana Board of Regents under Contract LEQSF(2019-22)-RD-A-21, in
part by the NSFC under Grant 62372184, in part by the Science and Tech-
nology Commission of Shanghai Municipality under Grant 22DZ2229004.

Corresponding author: Li Chen. Email: li.chen@louisiana.edu

To this end, existing efforts have proposed a number of

GPU cluster schedulers (e.g., [8], [4], [9]) for deep learning.

However, they either lack the awareness of job and resource

heterogeneity, leading to suboptimal job performance, or are

tightly coupled with specific objectives, hardly generalized

to other operational goals. It has been observed in [1] that

DNN training jobs show heterogeneous performance behavior

across accelerator devices of different types, due to various

architectural differences. For example, a ResNet-50 model

achieves a nearly 10× speedup when trained on an NVIDIA

V100 GPU compared with a K80 GPU, while an A3C Deep

Reinforcement Learning model only exhibits 2× acceleration.

In light of such observations, Gavel [1] has been proposed

as a heterogeneity-aware cluster scheduler, which is the first

to address the aforementioned performance heterogeneity of

DNN training jobs across multi-type accelerators in a cluster. It

utilizes an optimization-based scheduling framework to explic-

itly account for job placement and performance heterogeneity,

able to be generalized to express other scheduling policies.

However, it does not explicitly characterize performance het-

erogeneity at a finer-grained task level. This means that parallel

tasks of a DNN training job cannot be effectively scheduled on

heterogeneous devices. If a job requires 4 V100 GPUs, but the

cluster has 3 V100 and 3 K80 GPUs available, the job cannot

proceed and must wait for the next scheduling instance. This

limitation highlights the need for a more sophisticated and

flexible scheduler that can make the best use of the available

cluster resources while accommodating task-level performance

heterogeneity.

To bridge this gap, in this paper, we present a new fine-

grained heterogeneity-aware online scheduler, named Hadar,

for a deep learning cluster shared by DNN training jobs. The

essence of our scheduler relies on our problem formulation

and optimization framework for task-level resource allocation

across both temporal and spatial dimensions, as opposed to

the state-of-the-art counterpart, Gavel [1], whose optimization

framework only characterizes the spatial resource allocation

with just job-level heterogeneity awareness. Based on our

optimization framework, we design an online scheduling al-

gorithm, which addresses the task-level performance hetero-

geneity of DNN jobs on different accelerators and makes

the best task-level decisions upon a scheduling event. More

specifically, we begin with the goal of maximizing the overall

681

2024 IEEE International Parallel and Distributed Processing Symposium (IPDPS)

1530-2075/24/$31.00 ©2024 IEEE
DOI 10.1109/IPDPS57955.2024.00066

20
24

 IE
EE

 In
te

rn
at

io
na

l P
ar

al
le

l a
nd

 D
is

tri
bu

te
d

Pr
oc

es
si

ng
 S

ym
po

si
um

 (I
PD

PS
) |

 9
79

-8
-3

50
3-

87
11

-7
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

D
O

I:
10

.1
10

9/
IP

D
PS

57
95

5.
20

24
.0

00
66

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on August 02,2024 at 20:11:52 UTC from IEEE Xplore. Restrictions apply.

job utility, a metric defined according to the job throughput

and epoch number, aiming at minimizing the average job

completion time of the cluster. To tackle the combinatorial

online optimization problem, our scheduler Hadar utilizes an

online primal-dual framework combined with a dual subrou-

tine, to approximate optimal solutions within proven constant

bounds. It computes the dual resource price according to

time-dependent resource (number and type of accelerators,

bandwidth) consumption levels to decide job admission and

resource allocation accordingly. Hadar can express other

scheduling policies in our online optimization framework as

well, maintaining the favorable property of generality as in

Gavel. Finally, to evaluate the performance of Hadar, we

conduct extensive experiments both in a physical cluster and

by simulation, comparing it with those of two state-of-the-art

counterparts, namely Gavel [1] and Tiresias [4], as well as the

YARN-CS [6] scheduler commonly used in production. Our

extensive simulation studies, conducted using an event-based

trace-driven simulator under various settings, demonstrate that

Hadar reduces the average job completion time (JCT) by 1.5-

1.8× when compared to Gavel, 2.1-2.5× over Tiresias, and 7-

15× over YARN-CS scheduler. Meanwhile, Hadar improves

the finish-time fairness [10] by 1.5× compared to Gavel, and

also improves the makespan of jobs by 1.5× over Gavel.

Furthermore, real-world experiments in a physical cluster also

exhibit superior performance of Hadar over its counterparts.

More specifically, it improves the JCT by 2.3× compared to

Gavel and 3× over Tiresias. With respect to the makespan,

Hadar achieves an improvement of 1.9× and 2.9× over the

two baselines, respectively.

Overall, the main contribution of this work can be summa-

rized as follows.

• We propose an efficient online scheduler for deep learning

training jobs in a GPU cluster, addressing the perfor-

mance heterogeneity of multi-type accelerators at the

task-level granularity.

• We present an online optimization algorithm that employs

the primal-dual framework coupled with a dual subroutine

to analyze and tackle the scheduling problem on multiple

heterogeneous accelerators. Our optimization framework

is general enough, able to express diverse scheduling

objectives.

• We prove the polynomial runtime complexity of our algo-

rithm and also perform a competitive analysis to provide

a long-term performance guarantee that approximates

optimal solutions within proven constant bounds.

• We conduct extensive real-world experiments and trace-

driven simulations, with results consistently demonstrat-

ing the advantages of Hadar on different metrics com-

pared to the state-of-the-arts.

II. RELATED WORK AND MOTIVATION

With the prevailing data parallel training model [11], a

deep neural network (DNN) training job typically has a large

number of epochs and spans multiple devices, to process

voluminous input data in an iterative and distributed manner.

With data parallelism, the complete set of training data is

partitioned across multiple machines in a cluster, and the deep

learning model is trained with the parallel implementation

of stochastic gradient descent (SGD). Each worker machine

maintains a local copy of the DNN model, computes the

updates based on the local dataset, and synchronizes among

workers periodically. Specifically, the training data is divided

into equal-sized data chunks that are trained by different

workers, with each data chunk further divided into equal-

sized mini-batches. When a worker starts, it fetches a data

chunk, processes the first mini-batch, and sends gradients to

the parameter servers [11] for parameter updates. Training

one mini-batch is called an iteration. Upon receiving updated

parameters from all parameter servers, the worker continues

computing gradients using the next mini-batch, and so on.

Once an entire data chunk is processed, the worker continues

training the next data chunk assigned to it. In a deep learning

training job, input data chunks can be repeatedly trained

for multiple rounds or epochs [12]. Each epoch refers to a

complete pass through all data chunks. A training job stops

after a pre-specified number of epochs.

To accommodate multi-user DNN training jobs, traditional

CPU-based cluster schedulers ([13], [14], [15], [16], [17], [18],

[19], [20], etc.) fall short, due to the lack of consideration on

the unique characteristics of distributed DNN training. Recent

production-scale workload analyses [21], [22] (e.g., a two-

month trace from a production cluster with over 6000 GPUs

in Alibaba [21]) confirm such characteristics in the temporal

(job runtime) and spatial (resource request) patterns around in

a deep learning cluster. In addition, the heavy-tailed nature of

resource requests, along with the wide range of queuing delay

and job runtime, has increasingly drawn research attention

to deep learning cluster scheduling (such as [8], [4], [10],

[23], [24]). These works focus on designing cluster schedulers

that are customized for DNN training jobs, to improve the

overall job performance and resource utilization in various

ways. However, they fail to effectively address the adverse

impact of resource heterogeneity.

Some recent schedulers [25], [26], [1], [27] have paid

attention to device and model heterogeneity to some extent,

but not at a fine granularity. AlloX [25] only considers two

types of devices (CPU and GPU) and the workloads are not

limited to deep learning jobs. Gandivafair [26] focuses merely

on fairness among jobs while Hydra [27] aims at meeting

deadlines. Gavel [1] accounts for the heterogeneity of both

DNN training workloads and hardware devices when allocat-

ing resources among jobs. It presents a general optimization

framework to characterize a number of scheduling policies. In

sharp contrast, in this paper, we design a new cluster scheduler

for DNN training jobs, effectively incorporating heterogeneity

awareness in our online resource scheduling at the task level of

finer granularity, across both temporal and spatial dimensions.

Compared to Gavel [1], which is the closest counterpart of

our work among the state-of-the-art, our scheduler is aware of

task-level performance heterogeneity and allocates resources

at finer granularity across an additional temporal dimension,

682

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on August 02,2024 at 20:11:52 UTC from IEEE Xplore. Restrictions apply.

a) Round based simulation of Gavel

J2
J1
J1

J2 J3
J3

J2
J2 J1

J1
J1 J1

J1
J1

R1 R2 R3 R6R5R4

Scheduling rounds

V100
#2

K80
#1

P100
#3

b) Round based simulation of Hadar

J2

R1 R2 R3 R4

Scheduling rounds

J2
J2 J1

J1
J1

(60,25,
50)

(60,10,
40)

(60,0,
30)

(40,0,
20)

(20,0,
10) (0,0,0) (50,15,

50)
(20,0,
50)

(0,0,
40)

(0,0,
30)

J1

J2

J2
J2

J3
J3

J3
J3

J3
J3
J1
J1
J1

J3
J3

J3
J3 J3

J3
J1

R5 R6

(0,0,
20)

(0,0,
10)

J3
J3J1

J1

J1
J1

J1

J3
J3

J3
J3

(0,0,0)

R7

J2

Fig. 1: An example to compare the scheduling outcomes of

three jobs in a cluster with 2 V100, 3 P100, and 1 K80 GPUs,

achieved by Gavel [1] and Hadar.

yielding marked overall performance improvement. Moreover,

similar to Gavel [1], our optimization framework underlying

the scheduler is also able to express other scheduling policies.

We next present a toy example to highlight our insights, further

strengthening our motivation.

A. Motivation Example

We consider a cluster with two V100, three P100, and one

K80 GPUs. Three jobs arrive at the beginning to be scheduled.

Job 1 (J1) requests 3 GPUs and requires 80 epochs to complete

its training. Job 2 (J2) requests 2 GPUs and has a total of 30

epochs. Job 3 (J3) requires 2 GPUs for 50 epochs. These jobs

exhibit different training speedup performances on different

GPUs, expressed as the following throughput matrix X:

X =

⎛
⎝

V 100 P100 K80

J1 40 20 30
J2 5 15 5
J3 10 2 20

⎞
⎠

According to Gavel [1], the optimal allocation matrix Y Gavel

is calculated as follows, under the assumption that the cluster

has the capacity to meet the requirements of all queued jobs:

Y Gavel =

⎛
⎝

V 100 P100 K80

J1 0.6 0.4 0.0
J2 0.2 0.6 0.2
J3 0.2 0 0.8

⎞
⎠

Each element of this matrix represents the proportion of time

that a job should run on a specific type of device. To achieve

a near-optimal allocation, Gavel uses a priority matrix to

schedule jobs on GPUs. The priority of a specific job on a

particular type of GPU is defined as the corresponding element

of Y Gavel divided by the number of rounds received (i.e.,
resource allocation received). Fig. 1a illustrates the scheduling

outcome over 6 rounds according to Gavel, where the first row

represents the number of remaining epochs for each of the

three jobs at a particular round. For example, in round 1 (R1

in the figure), J1, J2, and J3 have 60, 25, and 50 epochs to

complete, respectively, represented by (60,25,50) in Fig. 1a.

Hadar employs a preemptive, round-based approach to

allocate jobs across various GPU types. Calculating allocations

in each round aims to guide the cluster toward optimal allo-

cation. When a job is suspended, the latest model parameter

would be checkpointed to stable storage to prevent loss of

training progress. Asynchronous computation of allocations

and worker assignments minimizes synchronous overhead,

with the loading and saving of checkpoints being the only

synchronous operation, dependent on the model size. The

experimental section will provide insights into the overhead of

the preemption algorithm. Within each round, Gavel schedules

all tasks of a job on the same type of GPUs. In contrast,

we exploit the flexibility of task-level allocation, to maximize

the overall performance of the cluster. As shown in Fig. 1b,

Hadar strategically assigns the tasks of job J1 to two V 100
GPUs and one K80 GPU in round 1, resulting in a throughput

of min(40, 30) = 30, while job J2 attains a throughput of

15. In comparison, Gavel’s policy adopts the homogeneous

allocation of tasks strictly, causing jobs J1 and J2 to achieve

suboptimal throughputs in the long run. The average per round

throughputs achieved by Hadar (or Gavel) for jobs J1, J2 and

J3 are: 26.27 (or 20), 15 (or 10) and 10 (or 10). As observed,

the finer-grained allocation policy employed by Hadar results

in marked reduction in the average job completion time (JCT).

Specifically, J1 and J2 in this example finish faster under

Hadar than under Gavel, leading to 20% improvement in the

average JCT.

III. DESIGN OF Hadar

Our overall objective is to design an online scheduler for

distributed deep learning training jobs with the awareness

of resource heterogeneity. The Hadar scheduler features a

task-level scheduling granularity, which means it operates by

making decisions at the level of individual tasks. A task cor-

responds to a configurable number of epochs over a subset of

input data, offering flexibility in defining the granularity. This

granularity allows Hadar to more effectively manage resources

and schedule tasks in a fine-tuned manner, taking into account

the specific requirements and characteristics of each task

within deep learning workloads. Such a task-level approach is

crucial for optimizing performance and resource utilization in

heterogeneous computing environments, like those commonly

found in deep learning clusters. In this section, we present the

theoretical foundation of our scheduler design.

A. System Model and Problem Formulation

Consider a cluster of machines equipped with different

accelerator devices. A machine h has a capacity of crh for

type-r device. In a slotted time spectrum (1, 2, · · · , T), a deep

learning job j arrives at time aj ∈ [T], requesting a number

of worker devices Wj for model training. The device hetero-

geneity impacts the job training throughput, characterized by

Xr
j which represents the number of iterations per second by

job j on type-r accelerator. EjNj denotes the total number

of iterations to complete job j, where Ej refers to the total

number of epochs and Nj is the total number of data chunks

to be processed in each epoch of job j.

Upon arrival, the job joins a global queue managed by

the online scheduler, waiting to be assigned to available ma-

chine(s) for execution in subsequent time slots. The scheduler

makes scheduling decisions, wr
jh(t), representing the number

of type-r devices at machine h assigned to job j in time

683

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on August 02,2024 at 20:11:52 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Notation

J # of jobs
R # of GPU types
aj arrival time of job j
fj finish time of job j
Wj # of GPUs requested by job j
Ej # of total training epochs specified by job j
Nj # of data chunks (iterations) per epoch in job j
crh # of type-r GPUs on machine h
up Xr

j # of training iterations per sec for job j on type-r GPU

wr
jh(t)

of type-r GPUs on machine h allocated to job j
at time t

Uj(.) utility of job j

slot t. Let fj denote the finish time of job j, and thus the

job completion time can be expressed as fj − aj . We start

with finding the optimal resource allocation and scheduling

to maximize the overall utility across all jobs. The utility

of a job j, Uj(·), is a general non-negative function that

characterizes the value or desirability of a job’s execution

based on certain criteria. It specifies a job’s value in terms

of user-defined metric such as the job’s completion time,

fairness, effective throughput, etc. As a special case of job

utility, the effective throughput, defined as the average number

of iterations completed per second over the job’s lifetime, is

expressed as EjNj divided by j’s completion time. Given

these notations, we can formulate the following optimization

problem, P1:

max
∑

j Uj(fj − aj) (1)

s.t.
∑

t xj(t)
∑

r

∑
h w

r
jh(t)L ≥ EjNj , ∀j (1a)

xj(t) = min{Xr
j |
∑

h w
r
jh(t) > 0}, ∀j, ∀t (1b)

fj = max{t ∈ [T]|∑h

∑
r w

r
jh(t) > 0}, ∀j (1c)

0 ≤ ∑
j w

r
jh(t) ≤ crh, ∀h, ∀r, ∀t (1d)∑

h

∑
r w

r
jh(t) ∈ {0,Wj}, ∀j, ∀t ≥ aj

wr
jh(t) = 0, ∀j, ∀h, ∀t < aj (1e)

Constraints (1a) and (1b) regulate that the total number of

iterations accomplished across time is no smaller than EjNj

to complete job j. Specifically, L is the length of a time slot,

xj(t) expresses the bottleneck throughput across tasks, i.e.,
the number of iterations per second at the slowest device, due

to the parameter synchronization barrier. Constraint (1c) by

definition, represents the last time slot when a job receives

non-zero allocation to run. Constraint (1d) indicates resource

capacity limits at each machine, while (1e) regulates resource

requirements for each job, i.e., the All-or-Nothing property

(Gang scheduling), following the conventional practice [21].

A brief notation summary is presented in Table I. Expressing
other scheduling policies. Note that our optimization-based

scheduling framework can express other scheduling objectives.

For example, minimizing the average job completion time is

denoted as min
∑

j(fj − aj)/J , minimizing the makespan

is represented as minmaxj fj), and achieving fairness across

users can be minmaxj(fj −aj)/(f
isolated
j −aj), considering

the finish-time fairness metric [10], where f isolated
j is the job

finish time when using 1/J of the cluster.

B. Problem Solving based on Primal-Dual

The optimization problem P1 is difficult to solve since it

involves integer variables and non-conventional constraints

(1b), (1c). To address these challenges, we first reformulate

Problem P1 into the following integer linear program (ILP).

Suppose Sj is the set of feasible schedule for job j which

corresponds to the set of decisions (wr
jh(t), ∀h ∈ [H], j ∈

[J], t ∈ [T]). It satisfies constraints (1a), (1b), and (1e). Due

to the combinatorial nature of these constraints, there is an

exponential number of feasible schedules for each job. For a

schedule s ∈ Sj , the decision variable in the ILP is a binary

variable yjs which indicates whether the job is admitted to

the cluster under schedule s. With schedule s, job j’s finish

time is denoted as fjs, and its allocation wrs
jh(t) represents the

number of type-r workers in server h at time t. Thus, P1 can

be reformulated to P2 as follows:

max
∑

j

∑
s yjsUj(fjs − aj) (2)

s.t.
∑

j

∑
s:t∈s,h∈(t,s) w

rs
jh(t)yjs ≤ crh, ∀h, ∀r, ∀t (2a)∑

s yjs ≤ 1, ∀j (2b)

yjs ∈ {0, 1}, ∀j, ∀s (2c)

We use t ∈ s, h ∈ (t, s) to indicate that schedule s uses

server h to deploy a worker for job j in time t. Eq. (2) and

constraint (2a) are equivalent to Eq. (1) and constraint (1d),

respectively. Constraints (2b)-(2c) are equivalent to constraints

(1a)-(1c) and (1e). We can easily check that P1 and P2 are

equivalent, since a feasible solution to one has a corresponding

feasible solution to the other, with the same objective values.

After sidestepping non-conventional constraints, we next solve

Problem P2 based on the primal-dual framework [28], by

relaxing its integer constraints (2c) and formulating its dual

problem designated as P3 below:

min
∑

j μj +
∑

t

∑
h

∑
r k

r
h(t)c

r
h(t) (3)

s.t. μj ≥ Uj(fjs − aj)−
∑

t∈s

∑
h∈(t,s)

∑
r k

r
h(t)w

rs
jh(t)

(3a)

krh(t) ≥ 0, ∀h, ∀r, ∀j, ∀t, μj ≥ 0, ∀j
In this problem, krh(t) and μj are the dual variables associated

with constraints (2a) and (2b). krh(t) can be interpreted as

the unit cost for type-r accelerators on server h at time t.
Thus, the right-hand side of (3a) is the job utility minus the

overall resource cost for job j with schedule s at time t, which

indicates the payoff of the job. Let φj(s) denote this term,

i.e., φj(s) = Uj(fjs − aj) −
∑

t∈s

∑
h∈(t,s)

∑
r k

r
h(t)w

rs
jh(t).

To minimize the dual objective, μ∗
j should be expressed as

μ∗
j = max{0,maxs∈Sj φj(s)}, based on its constraints. The

corresponding best schedule s∗ can be written as

s∗ = argmaxs∈Sjφj(s) (4)

To solve Eq. (4), we design an efficient subroutine to be

elaborated later (Algorithm 2). With respect to krh(t), based on

its resource price interpretation, we hope to compute its value

to ensure that a high-utility job gets a positive payoff (if the

resource demand can be satisfied) and a job with a low utility

or without available resources gets a non-positive payoff. Let

684

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on August 02,2024 at 20:11:52 UTC from IEEE Xplore. Restrictions apply.

γr
h(t) denote the number of type-r accelerators allocated on

server h at time slot t. The dual price resource is designed to

be dynamically updated using the following price function:

krh(γ
r
h(t)) = Ur

min(
Ur

max

Ur
min

)
γr
h(t)

cr
h (5)

where

Ur
max = maxj

Uj(t
min
j −aj)

wr
j

, ∀r (6)

Ur
min = 1

4η minj
Uj(T−aj)

tmax
j

∑
r∈[R] w

r
j
, ∀r (7)

tmin
j =

NjEj

Mj maxr(Xr
j)
, tmax

j =
NjEj

Mj minr(Xr
j)

(8)

Ur
max and Ur

min imply the maximum and the minimum

per-unit-resource job utility values for type-r accelerator to

execute tasks among all jobs. Uj(T − aj) is the smallest

utility that job j may achieve, when it ends at T . η is the

scaling factor to ensure the initial value of the dual objective

is bounded. The intuition is stated as follows. The price

starts to be low enough to accept the incoming job: when

γr
h = 0, we have krh(t) = Ur

min, lowest to admit any job.

The price increases exponentially with the growing amount

of allocated accelerators, so as to filter out low-utility jobs.

When a server is out of free resources, γr
h(t) = crh, reaching

the price krh(t) = Ur
max, high enough to block other jobs

from getting these resources. Such a price function is crucial to

guarantee a good competitive ratio for our online algorithm, to

be presented in the next section. The values of Ur
max and Ur

min

are calculated based on the current workload of the cluster in

the online algorithm.

C. Algorithm Design

Based on the resource price and job payoff interpreta-

tions, we next present our online algorithm (Algorithm 1),

which generates optimal scheduling decisions for the jobs in

the queue in each round-based scheduling event (line 5).

Specifically, a greedy algorithm and a dynamic programming

approach are presented in Algorithm 2, to calculate s∗ in

Eq. (4) by solving the following equivalent form:

max Uj(fj − aj)−
∑

t

∑
h

∑
r k

r
h(t)w

r
jh(t)

s.t. γr
h(t) + wr

jh(t) ≤ crh, ∀j in queue, ∀r, ∀h, ∀t
Constraints (1a− 1e)

If we fix fj , the optimization objective can be further trans-

formed to min
∑

h

∑
r k

r
h(t)w

r
jh(t), which can be interpreted

as minimizing a cost function at each round. In Algorithm 2,

waiting jobs in the current round are in queue Q. According

to the recursive dynamic programming solution in each state,

there are two possible choices for a certain job, either calculat-

ing the cost and allocation by selecting the job for scheduling

or proceeding without selecting the job in line(14-15). The

set of jobs and the allocations with minimum cost is returned

from the DP function call line(16-21). Note that we always

save the result if costQ and costQ/j are compared for different

subsets of jobs to avoid recomputing the same subproblem in

later recursive function call. The FIND_ALLOC function selects

the best possible allocation within the current state of the

server (srvr). Initially, the server’s state is sorted according

to the descending order of throughput (iterations per second)

on each GPU type for the job (line 23). The algorithm

produces the allocations on different settings, by consolidat-

ing tasks of the job in the minimum possible server (line

24) and allocating the tasks of the job in different servers

(line 25). The costs are calculated using the cost function

aforementioned. For non-consolidated setting, communication

cost (the cost of bandwidth utilization while communicating

among different servers) is also added (line 26-27). The

allocation with minimum cost is selected and μj is calculated

to determine the feasibility of the allocation (line 28-32).

According to the selected allocation, the amount of allocated

resource γrc
h (t), price function krch (t) and server state are

updated (line 10-12).

Algorithm 1 Online Scheduling in Hadar.

Input: crh, ∀h ∈ [H], r ∈ [R]
1: Initialize: wr

jh(t) = 0, γr
h(t) = 0, krh(t) = krh(0), ∀j ∈

[J], t ∈ [T], h ∈ [H]
2: while true do
3: Upon the arrival of each job, admit it to the queue Q
4: In each round t:
5: {Qs, c

r
h, {wr

jh(t)(t)}} =

DP allocation(0, Q, crh, null, γ
r
h(t), k

r
h(t))

6: for job j ∈ [Qs] do
7: Run job j until round t+1 according to ({wr

jh(t)})
8: end for
9: If j is complete, remove it from Q

10: end while

D. Theoretical Analysis

Theorem 1 (Runtime Complexity): Algorithm 2 can make

scheduling decisions in polynomial time for a set of jobs in

an execution round.

Proof: The function FIND_ALLOC(job, srvr) has a time

complexity of O(R(H logH)) to sort the servers based on

the job throughput on GPUs of different types. This sorting

calculation is only done once during the lifespan of a job

in the system. For calculating allocation in both consolidated

(all allocpacked) and non-consolidated (all alloc!packed) set-

tings, all servers need to be iterated for each GPU type,

resulting in a complexity of O(HR). In our dynamic pro-

gramming (DP) algorithm, we have two states: job ID and

the current server state. We need to calculate n(Q)HR
combinations or function calls, with a time complexity of

O(HR) for each call. It should be noted that we pre-calculate

and save cost(DP allocation(jobs, srvr)) for all j ∈ Q.

Therefore, the time complexity of the DP is O(n(Q)(HR)2+
R(H logH)).

Theorem 2 (Competitive Ratio): Hadar is 2α competitive,

where α = maxr∈[R](1, ln
Ur

max

Ur
min

) and Ur
max, Ur

min are defined

in Eqs. (6), (7).

The concept of 2α competitiveness, as introduced in [28]

and applied in Hadar, is a metric for assessing the performance

of online algorithms in comparison to the ideal offline solution.

This competitiveness ratio quantifies the maximum deviation

685

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on August 02,2024 at 20:11:52 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2 DP_allocation(idx,Q, srvr, {wr
jh(t)}, γr

h(t),
krh(t), ∀h, ∀r)

1: if (index >= Q.length())||is Server Full(srvr) then
2: return Q, {wr

jh(t)}, srvr
3: end if
4: job = Q[idx]
5: {w prevrjh} ← {wr

jh(t)}
6: {w jobrjh} = FIND ALLOC(job, srvr)
7: if {w jobrjh} = null then
8: return Q, {wr

jh(t)}, srvr
9: end if

10: γrc
h (t) = γr

h(t) + w jobrjh, ∀h, ∀r
11: krch (t) ← Update krh(t) according to Eq. (5), ∀h, ∀r
12: srvrc ← Update srvr according to {w jobrjh}
13: {wr

jh(t)}.append(w jobrjh), ∀h, ∀r
14: (Q, {wr

jh(t)}, srvrc) = DP allocation((idx +
1), Q, srvrc, {wr

jh(t)}, γrc
h (t), krch (t)), ∀h, ∀r

15: (Q, {wcr
jh(t)}, srvr) = DP allocation((idx +

1), Q, srvr, {w prevrjh}, γr
h(t), k

r
h(t)), ∀h, ∀r

16: costQ+ =
∑

h

∑
r k

rc
h (t) wr

jh(t)
17: costQ/j+ =

∑
h

∑
r k

r
h(t) w

cr
jh(t)

18: if costQ < costQ/j then
19: return Q, {wr

jh(t)}, srvrc
20: end if
21: return Q, {wcr

jh(t)}, srvr
22: procedure FIND ALLOC(job, srvr):

23: srvr ← sort GPU type (desc. order of xr
j , ∀h ∈ H)

24: {allocspacked} ←allocs. within a consolidated setting.

25: {allocs!packed} ← allocs. independent of consolida-

tion.

26: {costpacked} ← ∑
h

∑
r k

r
h(t)w

r
jh(t), ∀allocspacked

27: {cost!packed} ← ∑
h

∑
r k

r
h(t)w

r
jh(t) +

comm. cost, ∀allocs!packed
28: alloc ← alloc. corresponding to

min({costpacked}, {cost!packed})
29: μj = Uj(fjs−aj)−min({costpacked}, {cost!packed})
30: if μj > 0 then
31: return alloc
32: end if
33: return null
34: end procedure

of an online algorithm’s performance from an optimal offline

algorithm that has complete information about future events.

In the case of Hadar, a 2α competitive rating indicates that

the worst-case performance of Hadar is at most double the

performance of the optimal offline solution, when adjusted for

a factor of α. This factor represents the degree of variability

or uncertainty inherent in the online decision-making process.

Therefore, a lower 2α competitiveness ratio signifies a closer

approximation to the ideal offline performance, underscoring

the efficiency of Hadar in managing resources in deep learning

clusters despite the lack of foresight that an online scheduler

inherently faces. We prove the theorem in what follows.

Proof: We define OPT as the optimal objective value of

Problem P1. Pj and Dj represent the objective values of the

primal problem P2 and of the dual problem P3, respectively,

returned by Algorithm 1 after deciding the schedule of job j.

The initial values of Eqs. (2) and (3) are denoted by P0 and

D0. Specifically, P0 = 0 and D0 =
∑

t

∑
h

∑
r k

r
h(0)c

r
h(0).

Finally, Pf and Df represent the final primal and dual objec-

tive values returned by Algorithm 1. The theorem is proved

based on the following definitions and lemmas taken from

[29], to ensure that solutions so derived are bounded within

2α from actual optimality.

Lemma 1: If there exists a constant α ≥ 1 such that Pj −
Pj−1 ≥ 1

α (Dj−Dj−1) for all jobs j ∈ [J], and if P0 = 0 and

D0 ≤ 1
2OPT , then Algorithm 1 is 2α-competitive in total job

utility.

Definition 1: The allocation-cost relationship for Algorithm

1 with α ≥ 1 is: kr,j−1
h (t)(γr,j

h (t)−γr,j−1
h (t)) ≥ crh

α (kr,jh (t)−
kr,j−1
h (t)).

Lemma 2: If the allocation-cost relationship holds for α ≥ 1,

then Algorithm 1 ensures Pj − Pj−1 ≥ 1
α (Dj −Dj−1), ∀j.

Definition 2: The differential allocation-cost relation-

ship for Algorithm 1 with αr
h ≥ 1 is: krh(t)dγ

r
h(t) ≥

crh
αr

h
dkrh(t), ∀t, h, r.

Lemma 3: αr
h = ln

Ur
max

Ur
min

and the price function defined in

Eq. (6, 7) satisfies the differential allocation-cost relationship.

Based on Lemma 3, the marginal cost function employed in

Algorithm 1 meets the condition of differential allocation-cost

relationship with α = maxr∈R(1, ln
Ur

max

Ur
min

). As the resource

demand of a job j is expected to be less than the capacity, we

can infer that: dγr
h(t) = γr,j

h (t)− γr,j−1
h (t),

dkrh(t) = kr
′

h (γr
h(t))(γ

r,j
h (t)−γr,j−1

h (t)) = kr,jh (t)−kr,j−1
h (t)

The allocation-cost relationship in Definition 1 holds for

α = maxr(1, ln
Ur

max

Ur
min

), which is implied by the differential

allocation-cost relationship in Definition 2. Considering Al-

gorithm 1, we note that 1
η ≤ tmax

j

∑
r∈[R] w

r
j∑

h

∑
r crh

, which implies

that
∑

h

∑
r crh

η ≤ tmax
j

∑
r w

r
j for all jobs j. This minimum

resource consumption across all tasks of job j can be used to

derive:

D0 =
∑
t

∑
h

∑
r

Ur
minc

r
h (9)

=
∑
t

∑
h

∑
r

1

4η
min
j,s

Uj(fjs − aj)

tmax
j

∑
r w

r
j

crh

=

∑
t

∑
h

∑
r c

r
h

4η
min
j,s

Uj(fjs − aj)

tmax
j

∑
r w

r
j

≤ 1

4
tmax
j

∑
r

wr
j min

j,s

Uj(fjs − aj)

tmax
j

∑
r w

r
j

, ∀j

Selecting (j, s) = argminj,s Uj(fjs − aj) yields:

(9) ≤ 1

4
tmax
j

∑
r∈[R]

wr
j min

j,s

Uj(fjs − aj)

tmax
j

∑
r w

r
j

, ∀j

≤ 1

2
Uj(fjs − aj) ≤ 1

2
OPT

The last inequality holds because we assume the offline opti-

686

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on August 02,2024 at 20:11:52 UTC from IEEE Xplore. Restrictions apply.

mal solution accepts at least one job, which is reasonable in the

real-world cluster. Then we have OPT ≥ minj,s Uj(fjs−aj).
Based on Lemma 1 and Lemma 2, we conclude the proof.

E. Implementation of Hadar

Guided by the theoretical investigation, we implement our

fine-grained heterogeneity-aware scheduler, Hadar, as illus-

trated in Fig. 2. Given a set of queued jobs, the online

scheduler dispatches all jobs onto different types of acceler-

ators from different servers towards maximizing the cluster-

wide utility. Our scheduler takes the job’s performance result

(i.e., iterations per second) on each accelerator type as its

input. In particular, the throughput estimator in Hadar obtains

performance measurements for each runnable job on each

available accelerator type either from user input or by profiling

during the first few rounds of execution. For a given input, the

scheduling algorithm in the allocator calculates the number

and types of GPUs assigned to each job on particular servers

in a given round. It considers task-level heterogeneity, straggler

performance, and job packing decisions to maximize overall

cluster utility.

IV. PERFORMANCE EVALUATION

In this section, we conduct extensive experiments to evaluate

the performance of Hadar in terms of the job completion time

(JCT), GPU utilization, makespan, and fairness, compared to

the state-of-the-art schedulers.

A. Trace-driven Simulations

We have developed a discrete-time simulator to evaluate

Hadar using a real-world trace [9]. Following the setup of the

simulation experiments in Gavel [1], our simulated cluster con-

sists of 15 nodes and a total of 20 GPUs of each type (V100,

P100, and K80). The workloads are based on a Microsoft

trace, summarized in Table II to be elaborated in the next

paragraph. For each job (workload) in Table II, we leverage its

throughput measurements from Gavel as our scheduling input.

We simulate the job events such as job arrival, completion, and

preemption. The overhead of checkpoint-restarts is simulated

by enforcing a 10-second delay for each job that has received

a new allocation which is based on the result shown in Table

IV. The duration of a scheduling round is set as 6 minutes.

Synthetic Workloads and Datasets. In our experiments, we

randomly selected 480 jobs from the busiest hour range (hours

3-10) of the Microsoft trace [9]. The trace includes information

such as the requested number of GPUs, submission time,

and job duration, while details on model architectures and

datasets are not provided. Therefore, we categorized the jobs

based on their total GPU time into four groups: Small (0-1

GPU-hours), Medium (1-10 GPU-hours), Large (10-50 GPU-

hours), and XLarge (60-100 GPU-hours). For each training job

in the trace, we uniformly sampled the job type from these

categories and specified its model and dataset accordingly, as

shown in Table II. We considered two arrival patterns in our

experiments: static and continuous. In the static pattern, all

jobs were available at the beginning of the trace, and no jobs

TABLE II: Evaluation workloads: model, dataset, and relative

size for each deep learning task

Task Model Dataset Size
Image
Classification

ResNet-50[30] ImageNet[31] XL

Image
Classification

ResNet-18[30] CIFAR-10[32] S

Language
Modeling

LSTM[33] Wikitext-2[34] L

Image-to-Image
Translation

CycleGAN[35], [36] Monet2photo[36] M

Language
Translation

Transformer[37]
Multi30K[38]
(de-en)

L

were added subsequently. In the continuous pattern, jobs were

continuously submitted to the cluster, and the job arrival times

were generated according to a Poisson arrival process with an

interarrival rate λ.

Baselines and Metrics. We conducted experiments to

compare the performance of Hadar with state-of-the-art deep

learning cluster scheduler proposals, Gavel [1] and Tiresias

[4], as well as the default production-level cluster scheduler,

Apache YARN’s capacity scheduler (YARN-CS) [6]. While

Hadar considers the task-level heterogeneity of DNN training

jobs for scheduling decisions, Gavel only focuses on job-level

heterogeneity, and Tiresias is not aware of the heterogeneity

among accelerators. The metrics used for comparison include

the average job completion time (JCT) and the makespan of

jobs. We also evaluate the fairness of our algorithm using

finish-time fairness [10], which is the ratio of the elapsed time

to finish a job given an allocation and the elapsed time to finish

a job when using 1
n of the cluster, with n being the number

of jobs executed on the cluster. We configure Gavel similar

to its testbed experiments while keeping the objective of its

optimization problem similar to ours in the comparative eval-

uation. Tiresias is configured with two priority queues and its

PromoteKnob disabled. YARN-CS, as a capacity scheduler,

is principally geared towards optimizing resource allocation,

ensuring equitable resource distribution across users and ap-

plications. Unlike Hadar which is specifically engineered to

enhance job completion times and ensure fairness, YARN-CS’s

approach to finish time fairness and minimizing overall job

completion duration is less advanced. Consequently, we did

not include YARN-CS in the comparison for these two metrics,

as its performance benchmarks in these areas do not align

closely with the objectives and design principles of Hadar.

1) Job Completion Time: As demonstrated in Fig. 3, Hadar
outperformed the other schedulers in both static and con-

tinuous trace settings. For a static trace, Hadar reduced the

average JCT by 7× compared to YARN-CS, and 1.8× and

2.5× over Gavel and Tiresias, respectively. Additionally, the

median JCT of Hadar was 15× better than YARN-CS, 2.1×
better than Gavel, and 3× better than Tiresias. Furthermore,

in the continuous trace setting, Hadar demonstrated improved

performance due to its awareness of straggling tasks and the

strategic task allocation policy of the online algorithm. The

scheduler shortened JCT under the continuous trace by 1.5, 5,

and 2.3× when compared to Gavel, YARN-CS, and Tiresias,

687

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on August 02,2024 at 20:11:52 UTC from IEEE Xplore. Restrictions apply.

. . . . Throughput
Estimation

Heterogeneous GPU Cluster

V100 P100

P100 V100

K80 P100

P100 K80

P100

P100 P100

P100

V100 K80

P100 V100 Get cluster status

 User provided measurements

Task level

heterogeneity

Straggler

performance

Packing

decision

Allocator

 Applying
Generate Allocation

 Submitted
jobs

Fig. 2: The overview of Hadar, a fine-grained heterogeneity-aware scheduler for a GPU-based deep learning cluster.

a) Static trace result

b) Continuous trace result

Fig. 3: The accumulative faction of jobs completed along the

timeline, when scheduled by Gavel [1], Tiresias [4], YARN-

CS [6], and Hadar, respectively.

respectively. The scheduler achieved better performance in a

static trace setting due to the availability of information about

all jobs, which facilitated favorable allocation. However, being

an online scheduler, Hadar can handle dynamic environments

where the workload is constantly changing by taking strategic

decisions. It can react to changes in workload and resource

availability, thereby providing better performance in terms

of the average JCT and the overall throughput. Additionally,

Hadar handles straggling tasks more effectively by reallocat-

ing resources to other tasks that are progressing faster.

2) GPU Utilization: Fig. 4 shows a comparison of the four

schedulers in terms of GPU utilization, which refers to the

percentage of total job run-time during which the GPUs are

utilized. The highest GPU utilization is achieved by YARN-CS

due to its non-preemptive nature. However, this comes at the

cost of long job completion times, as observed in the previous

subsection. Gavel, on the other hand, does not enable fine-

grained task-level scheduling, which leads to heterogeneous

20 40 60 80 100

0.2

0.4

0.6

0.8

1

GPU utilization percentage

F
ra

ct
io

n
of

ti
m

e

Hadar
Gavel

Tiresias

YARN

Fig. 4: Comparison of the cluster-wide GPU utilization among

the four schedulers.

GPUs remaining unused even if the total number of them

meets the requirement of a queued job. This results in a

lower GPU utilization compared to YARN-CS. Tiresias also

suffers from the same limitation as Gavel. In contrast, Hadar
leverages the advantages of fine-grained scheduling and task-

level heterogeneity consideration, which results in GPUs being

utilized to a greater extent. More specifically, Hadar can

allocate tasks to GPUs that are most suited for them, and

possibly of different types when necessary, based on task

characteristics and cluster resource availability. As a result,

the number of GPUs that remain unused is minimized, leading

to a higher GPU utilization compared to Gavel and Tiresias.

Moreover, Hadar exhibits a similar utilization compared to

YARN-CS, which indicates that it is capable of utilizing the

GPUs effectively while also achieving better job completion

times.

Fig. 5: Comparison of the finish-time-fairness (FTF) among

Gavel [1], Tiresias [4], and Hadar.

688

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on August 02,2024 at 20:11:52 UTC from IEEE Xplore. Restrictions apply.

3) Fairness: We conducted a comparison of the finish-time

fairness (FTF) metric among Gavel, Tiresias, and Hadar, as

presented in Fig. 5. The FTF metric measures the fairness

of job completion time given an allocation. According to

Fig. 5, our task-level heterogeneity-aware policy in Hadar
outperformed Gavel and Tiresias in terms of the average FTF,

with an improvement of 1.5× and 1.8× respectively. This

result implies that Hadar is more effective in ensuring fairness

in job completion time than the baseline schedulers.

Fig. 6: Comparison of the makespan among Gavel [1], Tiresias

[4], and Hadar.

4) Makespan: When we flexibly specify our scheduling

policy towards makespan minimization, Hadar achieves a

shorter makespan by 1.5× compared to Gavel and by 2×
compared to Tiresias, as illustrated in Fig. 6. Again, Hadar
benefits from leveraging the task-level assignment, based on

possibly optimal allocation decisions from our online opti-

mization framework, which leads to performance improvement

of the makespan over the state-of-the-art baselines.

Fig. 7: Scaling of our algorithm compared to Gavel [1]

with active jobs in a heterogeneous cluster. The cluster size

increases as the number of jobs increases.

5) Scalability: In Fig. 7, we present the running time of

our scheduling algorithm to generate decisions, in comparison

Fig. 8: The average Job Completion Time (JCT) for Hadar,

Gavel[1], and Tiresias[4], under varying input job rates. The

shaded regions denote the range between the minimum and

maximum JCT estimates, illustrating the performance re-

silience and variability under different operational loads.

with Gavel, when the number of jobs increases from 32 to

2048. As observed, the scaling performance of our algorithm

is similar to Gavel. Even under the heavy workloads of

2000 jobs, our allocation algorithm can compute and apply

allocations in a scheduling round in less than 7 minutes. Our

scheduler also has an efficient allocation update policy. Rather

than recomputing the allocation in every scheduling round,

the scheduler computes the allocation with the new incoming

job while the existing jobs in the cluster are still in the

running state. If the allocation of the running job changes by

computation, the job will be preempted and the new allocation

will be in effect. We observe that only 30% of scheduling

rounds require a change in allocation for an average job.

6) Min-Max Completion Time: In Fig. 8, the comparative

analysis of the minimum and maximum job completion times

(JCT) for the Hadar, Gavel, and Tiresias systems, the focus

on the range between these values reveals critical insights into

the robustness and reliability of each system under varying

workloads. The Hadar system demonstrates a relatively tight

range of JCT, suggesting consistent performance and a high

degree of control over job processing times. This could be

indicative of efficient resource management and load balancing

within the system. Gavel, while maintaining a comparable

average JCT to Hadar, exhibits a wider range as the input

job rate increases, hinting at potential challenges in sustaining

performance when faced with heavier workloads. In contrast,

Tiresias shows the largest range in JCT, particularly at higher

job rates, signaling a substantial variability that could affect

dependability. This might be a result of complex job process-

ing algorithms or less optimized resource allocation strategies.

Understanding these ranges is vital for system selection in

various operational scenarios, as they provide a window into

how each system might behave in the face of real-world

uncertainties and fluctuations in demand.

7) Impact of Round length: Fig. 9 presents the average

completion time of jobs when scheduled by Hadar under

different settings: with increasing workloads (x-axis) and

with increasing length of a scheduling round (6 minutes to

689

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on August 02,2024 at 20:11:52 UTC from IEEE Xplore. Restrictions apply.

Fig. 9: Impact of round length on the average JCT.

TABLE III: Comparison of performance (JCT and makespan)

among schedulers, in both physical and simulated clusters

Metric Hadar Gavel [1] Tiresias [4]
Physical
Cluster

JCT 1.99 hrs 4.776 hrs 5.97 hrs
Makespan 11.29 hrs 21.451 hrs 32.74 hrs

Simulated
Cluster

JCT 2.21 hrs 4.97 hrs 5.52 hrs
Makespan 12.4 hrs 18.6 hrs 24.92 hrs

48 minutes). Using smaller round lengths results in more

optimal allocations, but it also incurs higher overhead due to

frequent checkpointing. To balance this, a round length of 7

minutes and a checkpoint time of fewer than 6 seconds can

provide a steady average JCT as the input job rate (i.e. arrival

rate) increases. Larger round lengths lead to performance

degradation due to both queuing delays for waiting jobs and

allocation drifts from optimums with changing cluster states.

In our observation, queuing delays contribute to roughly half

of the performance degradation.

B. Prototype Experiments
Physical Cluster and Workloads. We further conduct

prototype experiments in a cluster consisting of 4 servers and 8

GPUs on AWS. Specifically, the cluster has two g4dn.xlarge

instances with NVIDIA T4 Tensor Cores, two g2dn.2xlarge

with NVIDIA GRID K520 GPUs, two p2.xlarge with

NVIDIA Tesla K80 GPUs, and two p3.2xlarge with

NVIDIA Tesla V100 GPUs. Each instance has ∼100GB

general purpose SSD used for logs and checkpoint files.

The maximum read and write throughput is 1000 MiB/s. An

open-source high-performance Remote Procedure Call (RPC)

framework, gRPC is adopted to facilitate the exchange of

20 40 60 80 100

0.2

0.4

0.6

0.8

1

GPU utilization percentage

F
ra

ct
io

n
of

ti
m

e

Hadar
Gavel

Tiresias

Fig. 10: Comparison of the GPU utilization for the physical

cluster.

TABLE IV: Performance overhead of Hadar’s preemptive

scheduler for various models, with and without resource

reallocation, over a 6-minute round duration.

Model
Overhead
w reallocation

Overhead
w/o reallocation

Resnet-50 2.1% 0.33%
ResNet-18 1.29% 0.21%
LSTM 2.01% 0.87%
CycleGAN 0.68% 0.13%
Transformers 0.71% 0.17%

control messages between the scheduler and workers. Similar

to our previous simulation experiments, we use models and

datasets in Table II for the prototype experiments as well. One

of the large datasets, ImageNet [31] is used by downscaling

the data size so that the experiment can be finished within a

reasonable amount of time. 100000 images of 200 classes (500

for each class) are included in the dataset. 10 jobs of different

models and sizes (GPU demands) from Table II are submitted

in the cluster. Each scheduling round is set as 6 minutes long.

Results and Analysis. We evaluate the performance of

Hadar, with respect to the average job completion time (JCT)

and the makespan metrics, in comparison to the baseline

schedulers, Gavel and Tiresias. As shown in Table III, Hadar
improves the average JCT by 2.3× compared to Gave and

3× over Tiresias. Table III also presents the results from

another simulation experiment, following the same workload

and cluster setting. The results and implications are consis-

tent. Remarkably, the JCT differs within 10% between the

simulation and prototype experiments. This further confirms

the accuracy and reliability of our simulation experiments.

Fig. 10 compares the three schedulers with respect to the

resulting cluster-wide GPU utilization in the physical cluster.

Again, the results consistently demonstrate superior cluster

utilization achieved by Hadar over Gavel and Tiresias, due to

its capability of allocating heterogeneous GPUs to concurrent

tasks of a job in an optimal way and reacting to dynamics in

the workload and resource availability.

Table IV presents the performance overhead associated with

Hadar’s preemptive scheduler when preempting tasks every

six minutes (round length). The table contrasts the overhead

for different deep learning models without job reallocation

(when the computed allocation and current allocation remain

the same) and with reallocation. The overhead, mainly influ-

enced by checkpoint loading and saving, varies according to

the model size. For instance, the Resnet-50 model has an over-

head of 2.1% with reallocation, which is substantially reduced

to 0.33% when reallocation is not employed. Similarly, the

LSTM model sees an overhead decrease from 2.01% to 0.87%

with reallocation.
V. CONCLUSION

Our paper proposes a novel task-level heterogeneity-aware

cluster scheduler called Hadar, which aims to optimize several

performance metrics such as the average job completion time,

fairness, and makespan. To achieve this, the scheduler is

formulated into an optimization problem for its solution, utiliz-

ing the online primal-dual framework for task-level resource

allocation across both temporal and spatial dimensions. We

690

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on August 02,2024 at 20:11:52 UTC from IEEE Xplore. Restrictions apply.

also undertake the theoretical analysis of the proposed solution

to show its polynomial runtime and a long-term performance

guarantee in terms of a bounded competitive ratio in job utility,

implying approximate optimal solutions within proven con-

stant bounds. Leveraging the dynamic programming structure,

our scheduler generates optimal scheduling decisions effec-

tively. Our prototype experiments and trace-driven simulations

show that Hadar outperforms its state-of-the-art counterparts.

REFERENCES

[1] D. Narayanan, K. Santhanam, F. Kazhamiaka, A. Phanishayee, and
M. Zaharia, “Heterogeneity-aware cluster scheduling policies for deep
learning workloads,” in proc. of USENIX Symposium on Operating
Systems Design and Implementation, 2020, pp. 481–498.

[2] Y. Wu, M. Schuster, Z. Chen, Q. Le, M. Norouzi, W. Macherey,
M. Krikun, Y. Cao, Q. Gao, K. Macherey, J. Klingner, A. Shah,
M. Johnson, X. Liu, u. Kaiser, S. Gouws, Y. Kato, T. Kudo, H. Kazawa,
and J. Dean, “Google’s neural machine translation system: Bridging
the gap between human and machine translation,” in arXiv preprint
arXiv:1609.08144, 2016.

[3] A. Xu, Z. Liu, Y. Guo, V. Sinha, and R. Akkiraju, “A new chatbot for
customer service on social media,” in proc. of Conference on Human
Factors in Computing Systems, 2017, p. 3506–3510.

[4] J. Gu, M. Chowdhury, K. G. Shin, Y. Zhu, M. Jeon, J. Qian, H. Liu, and
C. Guo, “Tiresias: A gpu cluster manager for distributed deep learning,”
in proc. of USENIX Symposium on Networked Systems Design and
Implementation, 2019, pp. 485–500.

[5] (2006) Amazon ec2 elastic gpus. [Online]. Available: https://aws.
amazon.com/

[6] (2008) Gpu-accelerated microsoft azure. [Online]. Avail-
able: https://www.nvidia.com/en-us/data-center/gpu-cloud-computing/
microsoft-azure/

[7] (2008) Google cloud gpu. [Online]. Available: https://cloud.google.
com/gpu/

[8] W. Xiao, R. Bhardwaj, R. Ramjee, M. Sivathanu, N. Kwatra, Z. Han,
P. Patel, X. Peng, H. Zhao, Q. Zhang et al., “Gandiva: Introspective
cluster scheduling for deep learning,” in proc. of USENIX Symposium
on Operating Systems Design and Implementation, 2018, pp. 595–610.

[9] M. Jeon, S. Venkataraman, A. Phanishayee, J. Qian, W. Xiao, and
F. Yang, “Analysis of large-scale multi-tenant gpu clusters for dnn
training workloads,” in proc. of USENIX Annual Technical Conference,
2019, pp. 947–960.

[10] K. Mahajan, A. Balasubramanian, A. Singhvi, S. Venkataraman,
A. Akella, A. Phanishayee, and S. Chawla, “Themis: Fair and efficient
gpu cluster scheduling,” in proc. of USENIX Symposium on Networked
Systems Design and Implementation, 2020, pp. 289–304.

[11] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski,
J. Long, E. J. Shekita, and B.-Y. Su, “Scaling distributed machine
learning with the parameter server,” in proc. of USENIX Symposium
on Operating Systems Design and Implementation, 2014, pp. 583–598.

[12] C. Trishul, S. Yutaka, A. Johnson, and K. Karthik, “Project adam: Build-
ing an efficient and scalable deep learning training system,” in proc. of
USENIX Symposium on Operating Systems Design and Implementation,
2014, pp. 571–582.

[13] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, A. Shenker, and
I. Stoica, “Dominant Resource Fairness: Fair Allocation of Multiple
Resource Types,” in proc. of USENIX Conference on Networked Systems
Design and Implementation, 2011.

[14] I. Gog, M. Schwarzkopf, A. Gleave, R. N. Watson, and S. Hand,
“Firmament: Fast, centralized cluster scheduling at scale,” in proc. of
Symposium on Operating Systems Design and Implementation, 2016,
pp. 99–115.

[15] R. Grandl, M. Chowdhury, A. Akella, and G. Ananthanarayanan,
“Altruistic scheduling in multi-resource clusters,” in proc. of USENIX
symposium on operating systems design and implementation, 2016, pp.
65–80.

[16] R. Grandl, S. Kandula, S. Rao, A. Akella, and J. Kulkarni, “Graphene:
Packing and dependency-aware scheduling for data-parallel clusters,”
in proc. of USENIX Symposium on Operating Systems Design and
Implementation, 2016, pp. 81–97.

[17] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. H.
Katz, S. Shenker, and I. Stoica, “Mesos: A platform for fine-grained
resource sharing in the data center.” in proc. of USENIX Symposium on
Networked Systems Design and Implementation, 2011, pp. 295–308.

[18] B. Huang, M. Boehm, Y. Tian, B. Reinwald, S. Tatikonda, and F. R.
Reiss, “Resource elasticity for large-scale machine learning,” in proc. of
SIGMOD International Conference on Management of Data, 2015, pp.
137–152.

[19] H. Zhang, L. Stafman, A. Or, and M. J. Freedman, “Slaq: quality-driven
scheduling for distributed machine learning,” in proc. of Symposium on
Cloud Computing, 2017, pp. 390–404.

[20] P. Thinakaran, J. R. Gunasekaran, B. Sharma, M. T. Kandemir, and
C. R. Das, “Phoenix: A constraint-aware scheduler for heterogeneous
datacenters,” in proc. of International Conference on Distributed Com-
puting Systems, 2017, pp. 977–987.

[21] Q. Weng, W. Xiao, Y. Yu, W. Wang, C. Wang, J. He, Y. Li, L. Zhang,
W. Lin, and Y. Ding, “Mlaas in the wild: Workload analysis and schedul-
ing in large-scale heterogeneous gpu clusters,” in proc. of USENIX
Symposium on Networked Systems Design and Implementation, 2022,
pp. 945–960.

[22] Q. Hu, P. Sun, S. Yan, Y. Wen, and T. Zhang, “Characterization and
prediction of deep learning workloads in large-scale gpu datacenters,” in
proc. of The International Conference for High Performance Computing,
Networking, Storage and Analysis, 2021, pp. 1–15.

[23] S. Wang, O. J. Gonzalez, X. Zhou, T. Williams, B. D. Friedman,
M. Havemann, and T. Woo, “An efficient and non-intrusive gpu
scheduling framework for deep learning training systems,” in proc. of
International Conference for High Performance Computing, Networking,
Storage and Analysis, 2020, pp. 1–13.

[24] Y. Zhao, Y. Liu, Y. Peng, Y. Zhu, X. Liu, and X. Jin, “Multi-resource
interleaving for deep learning training,” in proc. of the ACM Special
Interest Group on Data Communication, 2022, pp. 428–440.

[25] T. N. Le, X. Sun, M. Chowdhury, and Z. Liu, “Allox: Compute allocation
in hybrid clusters,” in proc. of European Conference on Computer
Systems, 2020, pp. 1–16.

[26] S. Chaudhary, R. Ramjee, M. Sivathanu, N. Kwatra, and S. Viswanatha,
“Balancing efficiency and fairness in heterogeneous gpu clusters for deep
learning,” in proc. of European Conference on Computer Systems, 2020,
pp. 1–16.

[27] Z. Yang, H. Wu, Y. Xu, Y. Wu, H. Zhong, and W. Zhang, “Hydra:
Deadline-aware and efficiency-oriented scheduling for deep learning jobs
on heterogeneous gpus,” IEEE Transactions on Computers, 2023.

[28] N. Buchbinder and J. S. Naor, “The design of competitive online
algorithms via a primal–dual approach,” Foundations and Trends® in
Theoretical Computer Science, pp. 93–263, 2009.

[29] Y. Bao, Y. Peng, C. Wu, and Z. Li, “Online job scheduling in distributed
machine learning clusters,” in proc. of IEEE Conference on Computer
Communications, 2018, pp. 495–503.

[30] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in proc. of IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2016, pp. 770–778.

[31] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in proc. of IEEE conference
on computer vision and pattern recognition, 2009, pp. 248–255.

[32] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
University of Toronto, 2012.

[33] (2013) Word-level language modeling rnn. [Online]. Available:
https://github.com/pytorch/examples/tree/main/word language model

[34] M. Stephen, X. Caiming, B. James, and S. Richard, “Pointer sentinel
mixture models,” in proc. of Conference on Learning Representations,
2017.

[35] (2020) Pytorch-gan. [Online]. Available: https://github.com/
eriklindernoren/PyTorch-GAN#cyclegan

[36] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-
image translation using cycle-consistent adversarial networks,” in proc.
of International Conference on Computer Vision, 2017, pp. 2242–2251.

[37] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, 2017.

[38] D. Elliott, S. Frank, K. Sima’an, and L. Specia, “Multi30k: Multilingual
english-german image descriptions,” in proc. of the Workshop on Vision
and Language, 2016, pp. 70–74.

691

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on August 02,2024 at 20:11:52 UTC from IEEE Xplore. Restrictions apply.

