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Abstract—With the wide adoption of deep neural network
(DNN) models for various applications, enterprises, and cloud
providers have built deep learning clusters and increasingly
deployed specialized accelerators, such as GPUs and TPUs,
for DNN training jobs. To arbitrate cluster resources among
multi-user jobs, existing schedulers fall short, either lacking
fine-grained heterogeneity awareness or hardly generalizable
to various scheduling policies. To fill this gap, we propose a
novel design of a task-level heterogeneity-aware scheduler, Hadar,
based on an online optimization framework that can express
other scheduling algorithms. Hadar leverages the performance
traits of DNN jobs on a heterogeneous cluster, characterizes
the task-level performance heterogeneity in the optimization
problem, and makes scheduling decisions across both spatial and
temporal dimensions. The primal-dual framework is employed,
with our design of a dual subroutine, to solve the optimization
problem and guide the scheduling design. Extensive trace-driven
simulations with representative DNN models have been conducted
to demonstrate that Hadar improves the average job completion
time (JCT) by 3× over an Apache YARN-based resource manager
used in production. Moreover, Hadar outperforms Gavel[1], the
state-of-the-art heterogeneity-aware scheduler, by 2.5× for the
average JCT, and shortens the queuing delay by 13% and
improve FTF (Finish-Time-Fairness) by 1.5%.

Index Terms—distributed deep learning, scheduling, optimiza-
tion

I. INTRODUCTION

The application of deep learning has become ubiquitous
across various domains, including but not limited to speech
recognition, natural language processing [2], supercomputing,
and social media [3]. To facilitate the ever-increasing demand
for deep neural network (DNN) training [4], large enterprises
and cloud providers [5], [6], [7] have constructed dedicated
deep learning clusters. These clusters have increasingly de-
ployed specialized accelerators, such as GPUs, TPUs, and
FPGAs, to accelerate DNN model training with intricate
architectures. Expensive resources in such clusters require
efficient scheduling among multiple user jobs, considering
overall deep learning job performance, cluster-wide resource
utilization, fairness, etc.
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To this end, existing efforts have proposed a number of
GPU cluster schedulers (e.g., [8], [4], [9]) for deep learning.
However, they either lack the awareness of job and resource
heterogeneity, leading to suboptimal job performance, or are
tightly coupled with specific objectives, hardly generalized
to other operational goals. It has been observed in [1] that
DNN training jobs show heterogeneous performance behavior
across accelerator devices of different types, due to various
architectural differences. For example, a ResNet-50 model
achieves a nearly 10× speedup when trained on an NVIDIA
V100 GPU compared with a K80 GPU, while an A3C Deep
Reinforcement Learning model only exhibits 2× acceleration.
In light of such observations, Gavel [1] has been proposed
as a heterogeneity-aware cluster scheduler, which is the first
to address the aforementioned performance heterogeneity of
DNN training jobs across multi-type accelerators in a cluster. It
utilizes an optimization-based scheduling framework to explic-
itly account for job placement and performance heterogeneity,
able to be generalized to express other scheduling policies.
However, it does not explicitly characterize performance het-
erogeneity at a finer-grained task level. This means that parallel
tasks of a DNN training job cannot be effectively scheduled on
heterogeneous devices. If a job requires 4 V100 GPUs, but the
cluster has 3 V100 and 3 K80 GPUs available, the job cannot
proceed and must wait for the next scheduling instance. This
limitation highlights the need for a more sophisticated and
flexible scheduler that can make the best use of the available
cluster resources while accommodating task-level performance
heterogeneity.

To bridge this gap, in this paper, we present a new fine-
grained heterogeneity-aware online scheduler, named Hadar,
for a deep learning cluster shared by DNN training jobs. The
essence of our scheduler relies on our problem formulation
and optimization framework for task-level resource allocation
across both temporal and spatial dimensions, as opposed to
the state-of-the-art counterpart, Gavel [1], whose optimization
framework only characterizes the spatial resource allocation
with just job-level heterogeneity awareness. Based on our
optimization framework, we design an online scheduling al-
gorithm, which addresses the task-level performance hetero-
geneity of DNN jobs on different accelerators and makes
the best task-level decisions upon a scheduling event. More
specifically, we begin with the goal of maximizing the overall
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job utility, a metric defined according to the job throughput
and epoch number, aiming at minimizing the average job
completion time of the cluster. To tackle the combinatorial
online optimization problem, our scheduler Hadar utilizes an
online primal-dual framework combined with a dual subrou-
tine, to approximate optimal solutions within proven constant
bounds. It computes the dual resource price according to
time-dependent resource (number and type of accelerators,
bandwidth) consumption levels to decide job admission and
resource allocation accordingly. Hadar can express other
scheduling policies in our online optimization framework as
well, maintaining the favorable property of generality as in
Gavel. Finally, to evaluate the performance of Hadar, we
conduct extensive experiments both in a physical cluster and
by simulation, comparing it with those of two state-of-the-art
counterparts, namely Gavel [1] and Tiresias [4], as well as the
YARN-CS [6] scheduler commonly used in production. Our
extensive simulation studies, conducted using an event-based
trace-driven simulator under various settings, demonstrate that
Hadar reduces the average job completion time (JCT) by 1.5-
1.8× when compared to Gavel, 2.1-2.5× over Tiresias, and 7-
15× over YARN-CS scheduler. Meanwhile, Hadar improves
the finish-time fairness [10] by 1.5× compared to Gavel, and
also improves the makespan of jobs by 1.5× over Gavel.
Furthermore, real-world experiments in a physical cluster also
exhibit superior performance of Hadar over its counterparts.
More specifically, it improves the JCT by 2.3× compared to
Gavel and 3× over Tiresias. With respect to the makespan,
Hadar achieves an improvement of 1.9× and 2.9× over the
two baselines, respectively.

Overall, the main contribution of this work can be summa-
rized as follows.

• We propose an efficient online scheduler for deep learning
training jobs in a GPU cluster, addressing the perfor-
mance heterogeneity of multi-type accelerators at the
task-level granularity.

• We present an online optimization algorithm that employs
the primal-dual framework coupled with a dual subroutine
to analyze and tackle the scheduling problem on multiple
heterogeneous accelerators. Our optimization framework
is general enough, able to express diverse scheduling
objectives.

• We prove the polynomial runtime complexity of our algo-
rithm and also perform a competitive analysis to provide
a long-term performance guarantee that approximates
optimal solutions within proven constant bounds.

• We conduct extensive real-world experiments and trace-
driven simulations, with results consistently demonstrat-
ing the advantages of Hadar on different metrics com-
pared to the state-of-the-arts.

II. RELATED WORK AND MOTIVATION

With the prevailing data parallel training model [11], a
deep neural network (DNN) training job typically has a large
number of epochs and spans multiple devices, to process
voluminous input data in an iterative and distributed manner.

With data parallelism, the complete set of training data is
partitioned across multiple machines in a cluster, and the deep
learning model is trained with the parallel implementation
of stochastic gradient descent (SGD). Each worker machine
maintains a local copy of the DNN model, computes the
updates based on the local dataset, and synchronizes among
workers periodically. Specifically, the training data is divided
into equal-sized data chunks that are trained by different
workers, with each data chunk further divided into equal-
sized mini-batches. When a worker starts, it fetches a data
chunk, processes the first mini-batch, and sends gradients to
the parameter servers [11] for parameter updates. Training
one mini-batch is called an iteration. Upon receiving updated
parameters from all parameter servers, the worker continues
computing gradients using the next mini-batch, and so on.
Once an entire data chunk is processed, the worker continues
training the next data chunk assigned to it. In a deep learning
training job, input data chunks can be repeatedly trained
for multiple rounds or epochs [12]. Each epoch refers to a
complete pass through all data chunks. A training job stops
after a pre-specified number of epochs.

To accommodate multi-user DNN training jobs, traditional
CPU-based cluster schedulers ([13], [14], [15], [16], [17], [18],
[19], [20], etc.) fall short, due to the lack of consideration on
the unique characteristics of distributed DNN training. Recent
production-scale workload analyses [21], [22] (e.g., a two-
month trace from a production cluster with over 6000 GPUs
in Alibaba [21]) confirm such characteristics in the temporal
(job runtime) and spatial (resource request) patterns around in
a deep learning cluster. In addition, the heavy-tailed nature of
resource requests, along with the wide range of queuing delay
and job runtime, has increasingly drawn research attention
to deep learning cluster scheduling (such as [8], [4], [10],
[23], [24]). These works focus on designing cluster schedulers
that are customized for DNN training jobs, to improve the
overall job performance and resource utilization in various
ways. However, they fail to effectively address the adverse
impact of resource heterogeneity.

Some recent schedulers [25], [26], [1], [27] have paid
attention to device and model heterogeneity to some extent,
but not at a fine granularity. AlloX [25] only considers two
types of devices (CPU and GPU) and the workloads are not
limited to deep learning jobs. Gandivafair [26] focuses merely
on fairness among jobs while Hydra [27] aims at meeting
deadlines. Gavel [1] accounts for the heterogeneity of both
DNN training workloads and hardware devices when allocat-
ing resources among jobs. It presents a general optimization
framework to characterize a number of scheduling policies. In
sharp contrast, in this paper, we design a new cluster scheduler
for DNN training jobs, effectively incorporating heterogeneity
awareness in our online resource scheduling at the task level of
finer granularity, across both temporal and spatial dimensions.
Compared to Gavel [1], which is the closest counterpart of
our work among the state-of-the-art, our scheduler is aware of
task-level performance heterogeneity and allocates resources
at finer granularity across an additional temporal dimension,
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Fig. 1: An example to compare the scheduling outcomes of
three jobs in a cluster with 2 V100, 3 P100, and 1 K80 GPUs,
achieved by Gavel [1] and Hadar.

yielding marked overall performance improvement. Moreover,
similar to Gavel [1], our optimization framework underlying
the scheduler is also able to express other scheduling policies.
We next present a toy example to highlight our insights, further
strengthening our motivation.

A. Motivation Example

We consider a cluster with two V100, three P100, and one
K80 GPUs. Three jobs arrive at the beginning to be scheduled.
Job 1 (J1) requests 3 GPUs and requires 80 epochs to complete
its training. Job 2 (J2) requests 2 GPUs and has a total of 30
epochs. Job 3 (J3) requires 2 GPUs for 50 epochs. These jobs
exhibit different training speedup performances on different
GPUs, expressed as the following throughput matrix X:

X =


V 100 P100 K80

J1 40 20 30
J2 5 15 5
J3 10 2 20


According to Gavel [1], the optimal allocation matrix Y Gavel

is calculated as follows, under the assumption that the cluster
has the capacity to meet the requirements of all queued jobs:

Y Gavel =


V 100 P100 K80

J1 0.6 0.4 0.0
J2 0.2 0.6 0.2
J3 0.2 0 0.8


Each element of this matrix represents the proportion of time
that a job should run on a specific type of device. To achieve
a near-optimal allocation, Gavel uses a priority matrix to
schedule jobs on GPUs. The priority of a specific job on a
particular type of GPU is defined as the corresponding element
of Y Gavel divided by the number of rounds received (i.e.,
resource allocation received). Fig. 1a illustrates the scheduling
outcome over 6 rounds according to Gavel, where the first row
represents the number of remaining epochs for each of the
three jobs at a particular round. For example, in round 1 (R1
in the figure), J1, J2, and J3 have 60, 25, and 50 epochs to
complete, respectively, represented by (60,25,50) in Fig. 1a.

Hadar employs a preemptive, round-based approach to
allocate jobs across various GPU types. Calculating allocations
in each round aims to guide the cluster toward optimal allo-
cation. When a job is suspended, the latest model parameter
would be checkpointed to stable storage to prevent loss of
training progress. Asynchronous computation of allocations

and worker assignments minimizes synchronous overhead,
with the loading and saving of checkpoints being the only
synchronous operation, dependent on the model size. The
experimental section will provide insights into the overhead of
the preemption algorithm. Within each round, Gavel schedules
all tasks of a job on the same type of GPUs. In contrast,
we exploit the flexibility of task-level allocation, to maximize
the overall performance of the cluster. As shown in Fig. 1b,
Hadar strategically assigns the tasks of job J1 to two V 100
GPUs and one K80 GPU in round 1, resulting in a throughput
of min(40, 30) = 30, while job J2 attains a throughput of
15. In comparison, Gavel’s policy adopts the homogeneous
allocation of tasks strictly, causing jobs J1 and J2 to achieve
suboptimal throughputs in the long run. The average per round
throughputs achieved by Hadar (or Gavel) for jobs J1, J2 and
J3 are: 26.27 (or 20), 15 (or 10) and 10 (or 10). As observed,
the finer-grained allocation policy employed by Hadar results
in marked reduction in the average job completion time (JCT).
Specifically, J1 and J2 in this example finish faster under
Hadar than under Gavel, leading to 20% improvement in the
average JCT.

III. DESIGN OF Hadar

Our overall objective is to design an online scheduler for
distributed deep learning training jobs with the awareness
of resource heterogeneity. The Hadar scheduler features a
task-level scheduling granularity, which means it operates by
making decisions at the level of individual tasks. A task cor-
responds to a configurable number of epochs over a subset of
input data, offering flexibility in defining the granularity. This
granularity allows Hadar to more effectively manage resources
and schedule tasks in a fine-tuned manner, taking into account
the specific requirements and characteristics of each task
within deep learning workloads. Such a task-level approach is
crucial for optimizing performance and resource utilization in
heterogeneous computing environments, like those commonly
found in deep learning clusters. In this section, we present the
theoretical foundation of our scheduler design.

A. System Model and Problem Formulation

Consider a cluster of machines equipped with different
accelerator devices. A machine h has a capacity of crh for
type-r device. In a slotted time spectrum (1, 2, · · · , T ), a deep
learning job j arrives at time aj ∈ [T ], requesting a number
of worker devices Wj for model training. The device hetero-
geneity impacts the job training throughput, characterized by
Xr

j which represents the number of iterations per second by
job j on type-r accelerator. EjNj denotes the total number
of iterations to complete job j, where Ej refers to the total
number of epochs and Nj is the total number of data chunks
to be processed in each epoch of job j.

Upon arrival, the job joins a global queue managed by
the online scheduler, waiting to be assigned to available ma-
chine(s) for execution in subsequent time slots. The scheduler
makes scheduling decisions, wr

jh(t), representing the number
of type-r devices at machine h assigned to job j in time



TABLE I: Notation

J # of jobs
R # of GPU types
aj arrival time of job j
fj finish time of job j
Wj # of GPUs requested by job j
Ej # of total training epochs specified by job j
Nj # of data chunks (iterations) per epoch in job j
crh # of type-r GPUs on machine h
up Xr

j # of training iterations per sec for job j on type-r GPU

wr
jh(t)

# of type-r GPUs on machine h allocated to job j
at time t

Uj(.) utility of job j

slot t. Let fj denote the finish time of job j, and thus the
job completion time can be expressed as fj − aj . We start
with finding the optimal resource allocation and scheduling
to maximize the overall utility across all jobs. The utility
of a job j, Uj(·), is a general non-negative function that
characterizes the value or desirability of a job’s execution
based on certain criteria. It specifies a job’s value in terms
of user-defined metric such as the job’s completion time,
fairness, effective throughput, etc. As a special case of job
utility, the effective throughput, defined as the average number
of iterations completed per second over the job’s lifetime, is
expressed as EjNj divided by j’s completion time. Given
these notations, we can formulate the following optimization
problem, P1:

max
∑

j Uj(fj − aj) (1)

s.t.
∑

t xj(t)
∑

r

∑
h w

r
jh(t)L ≥ EjNj , ∀j (1a)

xj(t) = min{Xr
j |
∑

h w
r
jh(t) > 0}, ∀j, ∀t (1b)

fj = max{t ∈ [T ]|
∑

h

∑
r w

r
jh(t) > 0}, ∀j (1c)

0 ≤
∑

j w
r
jh(t) ≤ crh, ∀h, ∀r, ∀t (1d)∑

h

∑
r w

r
jh(t) ∈ {0,Wj}, ∀j, ∀t ≥ aj

wr
jh(t) = 0, ∀j, ∀h, ∀t < aj (1e)

Constraints (1a) and (1b) regulate that the total number of
iterations accomplished across time is no smaller than EjNj

to complete job j. Specifically, L is the length of a time slot,
xj(t) expresses the bottleneck throughput across tasks, i.e.,
the number of iterations per second at the slowest device, due
to the parameter synchronization barrier. Constraint (1c) by
definition, represents the last time slot when a job receives
non-zero allocation to run. Constraint (1d) indicates resource
capacity limits at each machine, while (1e) regulates resource
requirements for each job, i.e., the All-or-Nothing property
(Gang scheduling), following the conventional practice [21].
A brief notation summary is presented in Table I. Expressing
other scheduling policies. Note that our optimization-based
scheduling framework can express other scheduling objectives.
For example, minimizing the average job completion time is
denoted as min

∑
j(fj − aj)/J , minimizing the makespan

is represented as minmaxj fj), and achieving fairness across
users can be minmaxj(fj −aj)/(f

isolated
j −aj), considering

the finish-time fairness metric [10], where f isolated
j is the job

finish time when using 1/J of the cluster.

B. Problem Solving based on Primal-Dual

The optimization problem P1 is difficult to solve since it
involves integer variables and non-conventional constraints
(1b), (1c). To address these challenges, we first reformulate
Problem P1 into the following integer linear program (ILP).
Suppose Sj is the set of feasible schedule for job j which
corresponds to the set of decisions (wr

jh(t),∀h ∈ [H], j ∈
[J ], t ∈ [T ]). It satisfies constraints (1a), (1b), and (1e). Due
to the combinatorial nature of these constraints, there is an
exponential number of feasible schedules for each job. For a
schedule s ∈ Sj , the decision variable in the ILP is a binary
variable yjs which indicates whether the job is admitted to
the cluster under schedule s. With schedule s, job j’s finish
time is denoted as fjs, and its allocation wrs

jh(t) represents the
number of type-r workers in server h at time t. Thus, P1 can
be reformulated to P2 as follows:

max
∑

j

∑
s yjsUj(fjs − aj) (2)

s.t.
∑

j

∑
s:t∈s,h∈(t,s) w

rs
jh(t)yjs ≤ crh,∀h,∀r, ∀t (2a)∑

s yjs ≤ 1,∀j (2b)
yjs ∈ {0, 1},∀j,∀s (2c)

We use t ∈ s, h ∈ (t, s) to indicate that schedule s uses
server h to deploy a worker for job j in time t. Eq. (2) and
constraint (2a) are equivalent to Eq. (1) and constraint (1d),
respectively. Constraints (2b)-(2c) are equivalent to constraints
(1a)-(1c) and (1e). We can easily check that P1 and P2 are
equivalent, since a feasible solution to one has a corresponding
feasible solution to the other, with the same objective values.
After sidestepping non-conventional constraints, we next solve
Problem P2 based on the primal-dual framework [28], by
relaxing its integer constraints (2c) and formulating its dual
problem designated as P3 below:
min

∑
j µj +

∑
t

∑
h

∑
r k

r
h(t)c

r
h(t) (3)

s.t. µj ≥ Uj(fjs − aj)−
∑

t∈s

∑
h∈(t,s)

∑
r k

r
h(t)w

rs
jh(t)

(3a)
krh(t) ≥ 0,∀h,∀r, ∀j,∀t, µj ≥ 0,∀j

In this problem, krh(t) and µj are the dual variables associated
with constraints (2a) and (2b). krh(t) can be interpreted as
the unit cost for type-r accelerators on server h at time t.
Thus, the right-hand side of (3a) is the job utility minus the
overall resource cost for job j with schedule s at time t, which
indicates the payoff of the job. Let ϕj(s) denote this term,
i.e., ϕj(s) = Uj(fjs − aj) −

∑
t∈s

∑
h∈(t,s)

∑
r k

r
h(t)w

rs
jh(t).

To minimize the dual objective, µ∗
j should be expressed as

µ∗
j = max{0,maxs∈Sj ϕj(s)}, based on its constraints. The

corresponding best schedule s∗ can be written as
s∗ = argmaxs∈Sjϕj(s) (4)

To solve Eq. (4), we design an efficient subroutine to be
elaborated later (Algorithm 2). With respect to krh(t), based on
its resource price interpretation, we hope to compute its value
to ensure that a high-utility job gets a positive payoff (if the
resource demand can be satisfied) and a job with a low utility
or without available resources gets a non-positive payoff. Let



γr
h(t) denote the number of type-r accelerators allocated on

server h at time slot t. The dual price resource is designed to
be dynamically updated using the following price function:

krh(γ
r
h(t)) = Ur

min(
Ur

max

Ur
min

)
γr
h(t)

cr
h (5)

where

Ur
max = maxj

Uj(t
min
j −aj)

wr
j

, ∀r (6)

Ur
min = 1

4η minj
Uj(T−aj)

tmax
j

∑
r∈[R] w

r
j
, ∀r (7)

tmin
j =

NjEj

Mj maxr(Xr
j )
, tmax

j =
NjEj

Mj minr(Xr
j )

(8)

Ur
max and Ur

min imply the maximum and the minimum
per-unit-resource job utility values for type-r accelerator to
execute tasks among all jobs. Uj(T − aj) is the smallest
utility that job j may achieve, when it ends at T . η is the
scaling factor to ensure the initial value of the dual objective
is bounded. The intuition is stated as follows. The price
starts to be low enough to accept the incoming job: when
γr
h = 0, we have krh(t) = Ur

min, lowest to admit any job.
The price increases exponentially with the growing amount
of allocated accelerators, so as to filter out low-utility jobs.
When a server is out of free resources, γr

h(t) = crh, reaching
the price krh(t) = Ur

max, high enough to block other jobs
from getting these resources. Such a price function is crucial to
guarantee a good competitive ratio for our online algorithm, to
be presented in the next section. The values of Ur

max and Ur
min

are calculated based on the current workload of the cluster in
the online algorithm.

C. Algorithm Design

Based on the resource price and job payoff interpreta-
tions, we next present our online algorithm (Algorithm 1),
which generates optimal scheduling decisions for the jobs in
the queue in each round-based scheduling event (line 5).
Specifically, a greedy algorithm and a dynamic programming
approach are presented in Algorithm 2, to calculate s∗ in
Eq. (4) by solving the following equivalent form:

max Uj(fj − aj)−
∑

t

∑
h

∑
r k

r
h(t)w

r
jh(t)

s.t. γr
h(t) + wr

jh(t) ≤ crh, ∀j in queue, ∀r, ∀h,∀t
Constraints (1a− 1e)

If we fix fj , the optimization objective can be further trans-
formed to min

∑
h

∑
r k

r
h(t)w

r
jh(t), which can be interpreted

as minimizing a cost function at each round. In Algorithm 2,
waiting jobs in the current round are in queue Q. According
to the recursive dynamic programming solution in each state,
there are two possible choices for a certain job, either calculat-
ing the cost and allocation by selecting the job for scheduling
or proceeding without selecting the job in line(14-15). The
set of jobs and the allocations with minimum cost is returned
from the DP function call line(16-21). Note that we always
save the result if costQ and costQ/j are compared for different
subsets of jobs to avoid recomputing the same subproblem in
later recursive function call. The FIND_ALLOC function selects
the best possible allocation within the current state of the
server (srvr). Initially, the server’s state is sorted according

to the descending order of throughput (iterations per second)
on each GPU type for the job (line 23). The algorithm
produces the allocations on different settings, by consolidat-
ing tasks of the job in the minimum possible server (line
24) and allocating the tasks of the job in different servers
(line 25). The costs are calculated using the cost function
aforementioned. For non-consolidated setting, communication
cost (the cost of bandwidth utilization while communicating
among different servers) is also added (line 26-27). The
allocation with minimum cost is selected and µj is calculated
to determine the feasibility of the allocation (line 28-32).
According to the selected allocation, the amount of allocated
resource γrc

h (t), price function krch (t) and server state are
updated (line 10-12).

Algorithm 1 Online Scheduling in Hadar.

Input: crh,∀h ∈ [H], r ∈ [R]
1: Initialize: wr

jh(t) = 0, γr
h(t) = 0, krh(t) = krh(0), ∀j ∈

[J ], t ∈ [T ], h ∈ [H]
2: while true do
3: Upon the arrival of each job, admit it to the queue Q
4: In each round t:
5: {Qs, c

r
h, {wr

jh(t)(t)}} =
DP allocation(0, Q, crh, null, γ

r
h(t), k

r
h(t))

6: for job j ∈ [Qs] do
7: Run job j until round t+1 according to ({wr

jh(t)})
8: end for
9: If j is complete, remove it from Q

10: end while

D. Theoretical Analysis

Theorem 1 (Runtime Complexity): Algorithm 2 can make
scheduling decisions in polynomial time for a set of jobs in
an execution round.

Proof: The function FIND_ALLOC(job, srvr) has a time
complexity of O(R(H logH)) to sort the servers based on
the job throughput on GPUs of different types. This sorting
calculation is only done once during the lifespan of a job
in the system. For calculating allocation in both consolidated
(all allocpacked) and non-consolidated (all alloc!packed) set-
tings, all servers need to be iterated for each GPU type,
resulting in a complexity of O(HR). In our dynamic pro-
gramming (DP) algorithm, we have two states: job ID and
the current server state. We need to calculate n(Q)HR
combinations or function calls, with a time complexity of
O(HR) for each call. It should be noted that we pre-calculate
and save cost(DP allocation(jobs, srvr)) for all j ∈ Q.
Therefore, the time complexity of the DP is O(n(Q)(HR)2+
R(H logH)).

Theorem 2 (Competitive Ratio): Hadar is 2α competitive,
where α = maxr∈[R](1, ln

Ur
max

Ur
min

) and Ur
max, Ur

min are defined
in Eqs. (6), (7).

The concept of 2α competitiveness, as introduced in [28]
and applied in Hadar, is a metric for assessing the performance
of online algorithms in comparison to the ideal offline solution.
This competitiveness ratio quantifies the maximum deviation



Algorithm 2 DP_allocation(idx,Q, srvr, {wr
jh(t)}, γr

h(t),
krh(t),∀h,∀r)

1: if (index >= Q.length())||is Server Full(srvr) then
2: return Q, {wr

jh(t)}, srvr
3: end if
4: job = Q[idx]
5: {w prevrjh} ← {wr

jh(t)}
6: {w jobrjh} = FIND ALLOC(job, srvr)
7: if {w jobrjh} = null then
8: return Q, {wr

jh(t)}, srvr
9: end if

10: γrc
h (t) = γr

h(t) + w jobrjh,∀h,∀r
11: krch (t)← Update krh(t) according to Eq. (5), ∀h,∀r
12: srvrc ← Update srvr according to {w jobrjh}
13: {wr

jh(t)}.append(w jobrjh),∀h,∀r
14: (Q, {wr

jh(t)}, srvrc) = DP allocation((idx +
1), Q, srvrc, {wr

jh(t)}, γrc
h (t), krch (t)),∀h,∀r

15: (Q, {wcr
jh(t)}, srvr) = DP allocation((idx +

1), Q, srvr, {w prevrjh}, γr
h(t), k

r
h(t)),∀h,∀r

16: costQ+ =
∑

h

∑
r k

rc
h (t) wr

jh(t)
17: costQ/j+ =

∑
h

∑
r k

r
h(t) w

cr
jh(t)

18: if costQ < costQ/j then
19: return Q, {wr

jh(t)}, srvrc
20: end if
21: return Q, {wcr

jh(t)}, srvr
22: procedure FIND ALLOC(job, srvr):
23: srvr ← sort GPU type (desc. order of xr

j , ∀h ∈ H )
24: {allocspacked} ←allocs. within a consolidated setting.
25: {allocs!packed} ← allocs. independent of consolida-

tion.
26: {costpacked} ←

∑
h

∑
r k

r
h(t)w

r
jh(t),∀allocspacked

27: {cost!packed} ←
∑

h

∑
r k

r
h(t)w

r
jh(t) +

comm. cost,∀allocs!packed
28: alloc ← alloc. corresponding to

min({costpacked}, {cost!packed})
29: µj = Uj(fjs−aj)−min({costpacked}, {cost!packed})
30: if µj > 0 then
31: return alloc
32: end if
33: return null
34: end procedure

of an online algorithm’s performance from an optimal offline
algorithm that has complete information about future events.
In the case of Hadar, a 2α competitive rating indicates that
the worst-case performance of Hadar is at most double the
performance of the optimal offline solution, when adjusted for
a factor of α. This factor represents the degree of variability
or uncertainty inherent in the online decision-making process.
Therefore, a lower 2α competitiveness ratio signifies a closer
approximation to the ideal offline performance, underscoring
the efficiency of Hadar in managing resources in deep learning
clusters despite the lack of foresight that an online scheduler
inherently faces. We prove the theorem in what follows.

Proof: We define OPT as the optimal objective value of
Problem P1. Pj and Dj represent the objective values of the
primal problem P2 and of the dual problem P3, respectively,
returned by Algorithm 1 after deciding the schedule of job j.
The initial values of Eqs. (2) and (3) are denoted by P0 and
D0. Specifically, P0 = 0 and D0 =

∑
t

∑
h

∑
r k

r
h(0)c

r
h(0).

Finally, Pf and Df represent the final primal and dual objec-
tive values returned by Algorithm 1. The theorem is proved
based on the following definitions and lemmas taken from
[29], to ensure that solutions so derived are bounded within
2α from actual optimality.

Lemma 1: If there exists a constant α ≥ 1 such that Pj −
Pj−1 ≥ 1

α (Dj−Dj−1) for all jobs j ∈ [J ], and if P0 = 0 and
D0 ≤ 1

2OPT , then Algorithm 1 is 2α-competitive in total job
utility.

Definition 1: The allocation-cost relationship for Algorithm
1 with α ≥ 1 is: kr,j−1

h (t)(γr,j
h (t)−γr,j−1

h (t)) ≥ crh
α (kr,jh (t)−

kr,j−1
h (t)).
Lemma 2: If the allocation-cost relationship holds for α ≥ 1,

then Algorithm 1 ensures Pj − Pj−1 ≥ 1
α (Dj −Dj−1),∀j.

Definition 2: The differential allocation-cost relation-
ship for Algorithm 1 with αr

h ≥ 1 is: krh(t)dγ
r
h(t) ≥

crh
αr

h
dkrh(t),∀t, h, r.

Lemma 3: αr
h = ln

Ur
max

Ur
min

and the price function defined in
Eq. (6, 7) satisfies the differential allocation-cost relationship.
Based on Lemma 3, the marginal cost function employed in
Algorithm 1 meets the condition of differential allocation-cost
relationship with α = maxr∈R(1, ln

Ur
max

Ur
min

). As the resource
demand of a job j is expected to be less than the capacity, we
can infer that: dγr

h(t) = γr,j
h (t)− γr,j−1

h (t),
dkrh(t) = kr

′

h (γr
h(t))(γ

r,j
h (t)−γr,j−1

h (t)) = kr,jh (t)−kr,j−1
h (t)

The allocation-cost relationship in Definition 1 holds for
α = maxr(1, ln

Ur
max

Ur
min

), which is implied by the differential
allocation-cost relationship in Definition 2. Considering Al-
gorithm 1, we note that 1

η ≤
tmax
j

∑
r∈[R] w

r
j∑

h

∑
r crh

, which implies

that
∑

h

∑
r crh

η ≤ tmax
j

∑
r w

r
j for all jobs j. This minimum

resource consumption across all tasks of job j can be used to
derive:

D0 =
∑
t

∑
h

∑
r

Ur
minc

r
h (9)

=
∑
t

∑
h

∑
r

1

4η
min
j,s

Uj(fjs − aj)

tmax
j

∑
r w

r
j

crh

=

∑
t

∑
h

∑
r c

r
h

4η
min
j,s

Uj(fjs − aj)

tmax
j

∑
r w

r
j

≤ 1

4
tmax
j

∑
r

wr
j min

j,s

Uj(fjs − aj)

tmax
j

∑
r w

r
j

,∀j

Selecting (j, s) = argminj,s Uj(fjs − aj) yields:

(9) ≤ 1

4
tmax
j

∑
r∈[R]

wr
j min

j,s

Uj(fjs − aj)

tmax
j

∑
r w

r
j

,∀j

≤ 1

2
Uj(fjs − aj) ≤ 1

2
OPT

The last inequality holds because we assume the offline opti-



mal solution accepts at least one job, which is reasonable in the
real-world cluster. Then we have OPT ≥ minj,s Uj(fjs−aj).
Based on Lemma 1 and Lemma 2, we conclude the proof.

E. Implementation of Hadar

Guided by the theoretical investigation, we implement our
fine-grained heterogeneity-aware scheduler, Hadar, as illus-
trated in Fig. 2. Given a set of queued jobs, the online
scheduler dispatches all jobs onto different types of acceler-
ators from different servers towards maximizing the cluster-
wide utility. Our scheduler takes the job’s performance result
(i.e., iterations per second) on each accelerator type as its
input. In particular, the throughput estimator in Hadar obtains
performance measurements for each runnable job on each
available accelerator type either from user input or by profiling
during the first few rounds of execution. For a given input, the
scheduling algorithm in the allocator calculates the number
and types of GPUs assigned to each job on particular servers
in a given round. It considers task-level heterogeneity, straggler
performance, and job packing decisions to maximize overall
cluster utility.

IV. PERFORMANCE EVALUATION

In this section, we conduct extensive experiments to evaluate
the performance of Hadar in terms of the job completion time
(JCT), GPU utilization, makespan, and fairness, compared to
the state-of-the-art schedulers.

A. Trace-driven Simulations

We have developed a discrete-time simulator to evaluate
Hadar using a real-world trace [9]. Following the setup of the
simulation experiments in Gavel [1], our simulated cluster con-
sists of 15 nodes and a total of 20 GPUs of each type (V100,
P100, and K80). The workloads are based on a Microsoft
trace, summarized in Table II to be elaborated in the next
paragraph. For each job (workload) in Table II, we leverage its
throughput measurements from Gavel as our scheduling input.
We simulate the job events such as job arrival, completion, and
preemption. The overhead of checkpoint-restarts is simulated
by enforcing a 10-second delay for each job that has received
a new allocation which is based on the result shown in Table
IV. The duration of a scheduling round is set as 6 minutes.

Synthetic Workloads and Datasets. In our experiments, we
randomly selected 480 jobs from the busiest hour range (hours
3-10) of the Microsoft trace [9]. The trace includes information
such as the requested number of GPUs, submission time,
and job duration, while details on model architectures and
datasets are not provided. Therefore, we categorized the jobs
based on their total GPU time into four groups: Small (0-1
GPU-hours), Medium (1-10 GPU-hours), Large (10-50 GPU-
hours), and XLarge (60-100 GPU-hours). For each training job
in the trace, we uniformly sampled the job type from these
categories and specified its model and dataset accordingly, as
shown in Table II. We considered two arrival patterns in our
experiments: static and continuous. In the static pattern, all
jobs were available at the beginning of the trace, and no jobs

TABLE II: Evaluation workloads: model, dataset, and relative
size for each deep learning task

Task Model Dataset Size
Image
Classification ResNet-50[30] ImageNet[31] XL

Image
Classification ResNet-18[30] CIFAR-10[32] S

Language
Modeling LSTM[33] Wikitext-2[34] L

Image-to-Image
Translation CycleGAN[35], [36] Monet2photo[36] M

Language
Translation Transformer[37] Multi30K[38]

(de-en) L

were added subsequently. In the continuous pattern, jobs were
continuously submitted to the cluster, and the job arrival times
were generated according to a Poisson arrival process with an
interarrival rate λ.

Baselines and Metrics. We conducted experiments to
compare the performance of Hadar with state-of-the-art deep
learning cluster scheduler proposals, Gavel [1] and Tiresias
[4], as well as the default production-level cluster scheduler,
Apache YARN’s capacity scheduler (YARN-CS) [6]. While
Hadar considers the task-level heterogeneity of DNN training
jobs for scheduling decisions, Gavel only focuses on job-level
heterogeneity, and Tiresias is not aware of the heterogeneity
among accelerators. The metrics used for comparison include
the average job completion time (JCT) and the makespan of
jobs. We also evaluate the fairness of our algorithm using
finish-time fairness [10], which is the ratio of the elapsed time
to finish a job given an allocation and the elapsed time to finish
a job when using 1

n of the cluster, with n being the number
of jobs executed on the cluster. We configure Gavel similar
to its testbed experiments while keeping the objective of its
optimization problem similar to ours in the comparative eval-
uation. Tiresias is configured with two priority queues and its
PromoteKnob disabled. YARN-CS, as a capacity scheduler,
is principally geared towards optimizing resource allocation,
ensuring equitable resource distribution across users and ap-
plications. Unlike Hadar which is specifically engineered to
enhance job completion times and ensure fairness, YARN-CS’s
approach to finish time fairness and minimizing overall job
completion duration is less advanced. Consequently, we did
not include YARN-CS in the comparison for these two metrics,
as its performance benchmarks in these areas do not align
closely with the objectives and design principles of Hadar.

1) Job Completion Time: As demonstrated in Fig. 3, Hadar
outperformed the other schedulers in both static and con-
tinuous trace settings. For a static trace, Hadar reduced the
average JCT by 7× compared to YARN-CS, and 1.8× and
2.5× over Gavel and Tiresias, respectively. Additionally, the
median JCT of Hadar was 15× better than YARN-CS, 2.1×
better than Gavel, and 3× better than Tiresias. Furthermore,
in the continuous trace setting, Hadar demonstrated improved
performance due to its awareness of straggling tasks and the
strategic task allocation policy of the online algorithm. The
scheduler shortened JCT under the continuous trace by 1.5, 5,
and 2.3× when compared to Gavel, YARN-CS, and Tiresias,
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Fig. 2: The overview of Hadar, a fine-grained heterogeneity-aware scheduler for a GPU-based deep learning cluster.
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Fig. 3: The accumulative faction of jobs completed along the
timeline, when scheduled by Gavel [1], Tiresias [4], YARN-
CS [6], and Hadar, respectively.

respectively. The scheduler achieved better performance in a
static trace setting due to the availability of information about
all jobs, which facilitated favorable allocation. However, being
an online scheduler, Hadar can handle dynamic environments
where the workload is constantly changing by taking strategic
decisions. It can react to changes in workload and resource
availability, thereby providing better performance in terms
of the average JCT and the overall throughput. Additionally,
Hadar handles straggling tasks more effectively by reallocat-
ing resources to other tasks that are progressing faster.

2) GPU Utilization: Fig. 4 shows a comparison of the four
schedulers in terms of GPU utilization, which refers to the
percentage of total job run-time during which the GPUs are
utilized. The highest GPU utilization is achieved by YARN-CS
due to its non-preemptive nature. However, this comes at the
cost of long job completion times, as observed in the previous
subsection. Gavel, on the other hand, does not enable fine-
grained task-level scheduling, which leads to heterogeneous
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Fig. 4: Comparison of the cluster-wide GPU utilization among
the four schedulers.
GPUs remaining unused even if the total number of them
meets the requirement of a queued job. This results in a
lower GPU utilization compared to YARN-CS. Tiresias also
suffers from the same limitation as Gavel. In contrast, Hadar
leverages the advantages of fine-grained scheduling and task-
level heterogeneity consideration, which results in GPUs being
utilized to a greater extent. More specifically, Hadar can
allocate tasks to GPUs that are most suited for them, and
possibly of different types when necessary, based on task
characteristics and cluster resource availability. As a result,
the number of GPUs that remain unused is minimized, leading
to a higher GPU utilization compared to Gavel and Tiresias.
Moreover, Hadar exhibits a similar utilization compared to
YARN-CS, which indicates that it is capable of utilizing the
GPUs effectively while also achieving better job completion
times.
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Fig. 5: Comparison of the finish-time-fairness (FTF) among
Gavel [1], Tiresias [4], and Hadar.



3) Fairness: We conducted a comparison of the finish-time
fairness (FTF) metric among Gavel, Tiresias, and Hadar, as
presented in Fig. 5. The FTF metric measures the fairness
of job completion time given an allocation. According to
Fig. 5, our task-level heterogeneity-aware policy in Hadar
outperformed Gavel and Tiresias in terms of the average FTF,
with an improvement of 1.5× and 1.8× respectively. This
result implies that Hadar is more effective in ensuring fairness
in job completion time than the baseline schedulers.
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Fig. 6: Comparison of the makespan among Gavel [1], Tiresias
[4], and Hadar.

4) Makespan: When we flexibly specify our scheduling
policy towards makespan minimization, Hadar achieves a
shorter makespan by 1.5× compared to Gavel and by 2×
compared to Tiresias, as illustrated in Fig. 6. Again, Hadar
benefits from leveraging the task-level assignment, based on
possibly optimal allocation decisions from our online opti-
mization framework, which leads to performance improvement
of the makespan over the state-of-the-art baselines.
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Fig. 7: Scaling of our algorithm compared to Gavel [1]
with active jobs in a heterogeneous cluster. The cluster size
increases as the number of jobs increases.

5) Scalability: In Fig. 7, we present the running time of
our scheduling algorithm to generate decisions, in comparison
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Fig. 8: The average Job Completion Time (JCT) for Hadar,
Gavel[1], and Tiresias[4], under varying input job rates. The
shaded regions denote the range between the minimum and
maximum JCT estimates, illustrating the performance re-
silience and variability under different operational loads.

with Gavel, when the number of jobs increases from 32 to
2048. As observed, the scaling performance of our algorithm
is similar to Gavel. Even under the heavy workloads of
2000 jobs, our allocation algorithm can compute and apply
allocations in a scheduling round in less than 7 minutes. Our
scheduler also has an efficient allocation update policy. Rather
than recomputing the allocation in every scheduling round,
the scheduler computes the allocation with the new incoming
job while the existing jobs in the cluster are still in the
running state. If the allocation of the running job changes by
computation, the job will be preempted and the new allocation
will be in effect. We observe that only 30% of scheduling
rounds require a change in allocation for an average job.

6) Min-Max Completion Time: In Fig. 8, the comparative
analysis of the minimum and maximum job completion times
(JCT) for the Hadar, Gavel, and Tiresias systems, the focus
on the range between these values reveals critical insights into
the robustness and reliability of each system under varying
workloads. The Hadar system demonstrates a relatively tight
range of JCT, suggesting consistent performance and a high
degree of control over job processing times. This could be
indicative of efficient resource management and load balancing
within the system. Gavel, while maintaining a comparable
average JCT to Hadar, exhibits a wider range as the input
job rate increases, hinting at potential challenges in sustaining
performance when faced with heavier workloads. In contrast,
Tiresias shows the largest range in JCT, particularly at higher
job rates, signaling a substantial variability that could affect
dependability. This might be a result of complex job process-
ing algorithms or less optimized resource allocation strategies.
Understanding these ranges is vital for system selection in
various operational scenarios, as they provide a window into
how each system might behave in the face of real-world
uncertainties and fluctuations in demand.

7) Impact of Round length: Fig. 9 presents the average
completion time of jobs when scheduled by Hadar under
different settings: with increasing workloads (x-axis) and
with increasing length of a scheduling round (6 minutes to
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Fig. 9: Impact of round length on the average JCT.
TABLE III: Comparison of performance (JCT and makespan)
among schedulers, in both physical and simulated clusters

Metric Hadar Gavel [1] Tiresias [4]
Physical
Cluster

JCT 1.99 hrs 4.776 hrs 5.97 hrs
Makespan 11.29 hrs 21.451 hrs 32.74 hrs

Simulated
Cluster

JCT 2.21 hrs 4.97 hrs 5.52 hrs
Makespan 12.4 hrs 18.6 hrs 24.92 hrs

48 minutes). Using smaller round lengths results in more
optimal allocations, but it also incurs higher overhead due to
frequent checkpointing. To balance this, a round length of 7
minutes and a checkpoint time of fewer than 6 seconds can
provide a steady average JCT as the input job rate (i.e. arrival
rate) increases. Larger round lengths lead to performance
degradation due to both queuing delays for waiting jobs and
allocation drifts from optimums with changing cluster states.
In our observation, queuing delays contribute to roughly half
of the performance degradation.

B. Prototype Experiments
Physical Cluster and Workloads. We further conduct

prototype experiments in a cluster consisting of 4 servers and 8
GPUs on AWS. Specifically, the cluster has two g4dn.xlarge

instances with NVIDIA T4 Tensor Cores, two g2dn.2xlarge

with NVIDIA GRID K520 GPUs, two p2.xlarge with
NVIDIA Tesla K80 GPUs, and two p3.2xlarge with
NVIDIA Tesla V100 GPUs. Each instance has ∼100GB
general purpose SSD used for logs and checkpoint files.
The maximum read and write throughput is 1000 MiB/s. An
open-source high-performance Remote Procedure Call (RPC)
framework, gRPC is adopted to facilitate the exchange of
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Fig. 10: Comparison of the GPU utilization for the physical
cluster.

TABLE IV: Performance overhead of Hadar’s preemptive
scheduler for various models, with and without resource
reallocation, over a 6-minute round duration.

Model Overhead
w reallocation

Overhead
w/o reallocation

Resnet-50 2.1% 0.33%
ResNet-18 1.29% 0.21%
LSTM 2.01% 0.87%
CycleGAN 0.68% 0.13%
Transformers 0.71% 0.17%

control messages between the scheduler and workers. Similar
to our previous simulation experiments, we use models and
datasets in Table II for the prototype experiments as well. One
of the large datasets, ImageNet [31] is used by downscaling
the data size so that the experiment can be finished within a
reasonable amount of time. 100000 images of 200 classes (500
for each class) are included in the dataset. 10 jobs of different
models and sizes (GPU demands) from Table II are submitted
in the cluster. Each scheduling round is set as 6 minutes long.

Results and Analysis. We evaluate the performance of
Hadar, with respect to the average job completion time (JCT)
and the makespan metrics, in comparison to the baseline
schedulers, Gavel and Tiresias. As shown in Table III, Hadar
improves the average JCT by 2.3× compared to Gave and
3× over Tiresias. Table III also presents the results from
another simulation experiment, following the same workload
and cluster setting. The results and implications are consis-
tent. Remarkably, the JCT differs within 10% between the
simulation and prototype experiments. This further confirms
the accuracy and reliability of our simulation experiments.
Fig. 10 compares the three schedulers with respect to the
resulting cluster-wide GPU utilization in the physical cluster.
Again, the results consistently demonstrate superior cluster
utilization achieved by Hadar over Gavel and Tiresias, due to
its capability of allocating heterogeneous GPUs to concurrent
tasks of a job in an optimal way and reacting to dynamics in
the workload and resource availability.

Table IV presents the performance overhead associated with
Hadar’s preemptive scheduler when preempting tasks every
six minutes (round length). The table contrasts the overhead
for different deep learning models without job reallocation
(when the computed allocation and current allocation remain
the same) and with reallocation. The overhead, mainly influ-
enced by checkpoint loading and saving, varies according to
the model size. For instance, the Resnet-50 model has an over-
head of 2.1% with reallocation, which is substantially reduced
to 0.33% when reallocation is not employed. Similarly, the
LSTM model sees an overhead decrease from 2.01% to 0.87%
with reallocation.

V. CONCLUSION

Our paper proposes a novel task-level heterogeneity-aware
cluster scheduler called Hadar, which aims to optimize several
performance metrics such as the average job completion time,
fairness, and makespan. To achieve this, the scheduler is
formulated into an optimization problem for its solution, utiliz-
ing the online primal-dual framework for task-level resource
allocation across both temporal and spatial dimensions. We



also undertake the theoretical analysis of the proposed solution
to show its polynomial runtime and a long-term performance
guarantee in terms of a bounded competitive ratio in job utility,
implying approximate optimal solutions within proven con-
stant bounds. Leveraging the dynamic programming structure,
our scheduler generates optimal scheduling decisions effec-
tively. Our prototype experiments and trace-driven simulations
show that Hadar outperforms its state-of-the-art counterparts.
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